4.5 Article

Insulin Promotes the Association of Heat Shock Protein 90 with the Inositol 1,4,5-Trisphosphate Receptor to Dampen Its Ca2+ Release Activity

期刊

ENDOCRINOLOGY
卷 150, 期 5, 页码 2190-2196

出版社

ENDOCRINE SOC
DOI: 10.1210/en.2008-1167

关键词

-

资金

  1. Canadian Institutes of Health Research
  2. Quebec Heart and Stroke Foundation
  3. Alzheimer Society of Canada
  4. Fonds de la Recherche en Sante du Quebec

向作者/读者索取更多资源

The inositol 1,4,5-trisphosphate receptor (IP3R) is a Ca2+ release channel that plays a pivotal role in regulating intracellular Ca2+ levels in resting cells. Three isoforms of IP(3)Rs have been identified, and they all possess a large regulatory domain that covers about 60% of the protein. This regulation is accomplished by interaction with small molecules, posttranslational modifications, and mostly protein-protein interactions. In our search for new binding partners of the IP3R, we found that 90-kDa heat-shock protein (Hsp90) binds to the IP3R. This interaction increased on stimulation of HEK293T6.11 cells with insulin but not with G(q) protein-coupled receptor (G(q)PCR) agonists. Moreover, the Hsp90 inhibitor geldanamycin (GA) disrupted the interaction between Hsp90 and the IP3R. Pretreatment of HEK293T6.11 cells with GA greatly increased the intracellular Ca2+ release induced by a GqPCR agonist. Insulin alone did not induce any intracellular Ca2+ release. However, insulin diminished the intracellular Ca2+ release induced by a GqPCR agonist. Interestingly, GA abolished the inhibitory effect of insulin on G(q)PCR-induced intracellular Ca2+ release. Furthermore, in our search for a mechanistic explanation to this phenomenon, we found that inhibition of kinases activated downstream of the insulin receptor greatly increased the interaction between Hsp90 and the IP3R. Of greater interest, we found that the simultaneous inhibition of mammalian target of rapamycin and the Src kinase almost completely disrupted the interaction between Hsp90 and the IP3R. These results demonstrate that insulin promotes the interaction of Hsp90 with the IP3R to dampen its Ca2+ release activity by a complex mechanism involving mammalian target of rapamycin and the Src kinase. (Endocrinology 150: 2190-2196, 2009)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据