4.5 Article

Endothelin-converting enzyme-1 degrades internalized somatostatin-14

期刊

ENDOCRINOLOGY
卷 149, 期 5, 页码 2200-2207

出版社

ENDOCRINE SOC
DOI: 10.1210/en.2007-1628

关键词

-

资金

  1. NIDDK NIH HHS [R01 DK043207, DK39957, R01 DK039957, R56 DK043207, R37 DK039957, DK43207] Funding Source: Medline

向作者/读者索取更多资源

Agonist-induced internalization of somatostatin receptors (ssts) determines subsequent cellular responsiveness to peptide agonists and influences sst receptor scintigraphy. To investigate sst2A trafficking, rat sst2A tagged with epitope was expressed in human embryonic kidney cells and tracked by antibody labeling. Confocal microscopical analysis revealed that stimulation with sst and octreotide induced internalization of sst2A. Internalized sst2A remained sequestrated within early endosomes, and 60 min after stimulation, internalized sst2A still colocalized with beta-arrestin1-enhanced green fluorescence protein (EGFP), endothelin-converting enzyme-1 (ECE-1), and rab5a. Internalized I-125-Tyr(11) -SST-14 was rapidly hydrolyzed by endosomal endopeptidases, with radioactive metabolites being released from the cell. Internalized I-125-Tyr(1) -octreotide accumulated as an intact peptide and was released from the cell as an intact peptide ligand. We have identified ECE-1 as one of the endopeptidases responsible for inactivation of internalized SST-14. ECE-1-mediated cleavage of SST-14 was inhibited by the specific ECE-1 inhibitor, SM-19712, and by preventing acidification of endosomes using bafilomycin A(1). ECE-1 cleaved SST-14 but not octreotide in an acidic environment. The metallopeptidases angiotensin-1 converting enzyme and ECE-2 did not hydrolyze SST-14 or octreotide. Our results show for the first time that stimulation with SST-14 and octreotide induced sequestration of sst2A into early endosomes and that endocytosed SST-14 is degraded by endopeptidases located in early endosomes. Furthermore, octreotide was not degraded by endosomal peptidases and was released as an intact peptide. This mechanism may explain functional differences between octreotide and SST-14 after sst2A stimulation. Moreover, further investigation of endopeptidase-regulated trafficking of neuropeptides may result in novel concepts of neuropeptide receptor inactivation in cancer diagnosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据