4.2 Article

Hippocampus-dependent spatial learning and memory are impaired in growth hormone-deficient spontaneous dwarf rats

期刊

ENDOCRINE JOURNAL
卷 58, 期 4, 页码 257-267

出版社

JAPAN ENDOCRINE SOC
DOI: 10.1507/endocrj.K11E-006

关键词

Growth hormone; Insulin-like growth factor I; Cognitive function; Spontaneous dwarf rat; Forebrain cholinergic neurons

资金

  1. Korea government (MEST) [2010-0016284, 2010-0028329]

向作者/读者索取更多资源

Growth hormone (GH)/insulin-like growth factor-I deficiencies are known to cause alterations in brain development resulting in impairment of cognitive function. In order to investigate the behavioral phenotype of GH-deficient spontaneous dwarf rats (SDRs), we examined the behavior of the SDRs in the Morris water maze and Y-maze tasks. The SDRs showed severe deficits in spatial learning and memory compared to normal rats. The possibility that the cognitive impairment is associated with alteration of neurotransmitter systems was examined histologically following completion of the behavioral tests, using choline acetyltransferase (ChAT), vesicular glutamate transporter 1 (VGlut1) and glutamic acid decarboxylase (GAD6) immunohistochemistry as markers. In the SDRs the number of ChAT-stained basal forebrain cholinergic neurons was decreased. ChAT staining was also decreased in the hippocampus, one of the target areas of basal forebrain cholinergic neurons. Next, we examined the number of glutamatergic and GABAergic boutons in the hippocampal molecular layer and found a significant reduction in the density of VGlut1+ boutons and an increase in GAD6+ profiles, leading to a significantly reduced ratio in glutamatergic/GABAergic synapses. Finally, the number of newly generated cells in the subgranular zone of the hippocampus was significantly lower than in normal rats. Taken togethei, our data suggest that GH is an important regulator of hippocampus-dependent spatial learning and memory. The behavioral deficits in the SDRs may be explained by altered basal forebrain cholinergic innervation, imbalance in hippocampal glutamatergic/GABAergic synapses, and decreased neurogenesis in the hippocampus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据