4.6 Article

Super-iron nanoparticles with facile cathodic charge transfer

期刊

ELECTROCHEMISTRY COMMUNICATIONS
卷 13, 期 9, 页码 909-912

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.elecom.2011.03.039

关键词

Super-iron; Cathode; Battery; Nanomaterials; Multiple charge transfer; XANES

资金

  1. U.S. DOE Office of Basic Energy Sciences
  2. NSF DMR [1006568]
  3. Division Of Materials Research
  4. Direct For Mathematical & Physical Scien [1006568] Funding Source: National Science Foundation

向作者/读者索取更多资源

Super-irons contain the +6 valence state of iron. One advantage of this is that it provides a multiple electron opportunity to store additional battery charge. A decrease of particle size from the micrometer to the nanometer domain provides a higher surface area to volume ratio, and opportunity to facilitate charge transfer, and improve the power, voltage and depth of discharge of cathodes made from such salts. However, super-iron salts are fragile, readily reduced to the ferric state, with both heat and contact with water, and little is known of the resultant passivating and non-passivating ferric oxide products. A pathway to decrease the super-iron particle size to the nano-domain is introduced, which overcomes this fragility, and retains the battery capacity advantage of their Fe(VI) valence state. Time and power controlled mechanosynthesis, through less aggressive, dry ball milling, leads to facile charge transfer of super-iron nanoparticles. Ex-situ X-ray Absorption Spectroscopy is used to explore the oxidation state and structure of these iron oxides during discharge and shows the significant change in stability of the ferrate structure to lower oxidation state when the particle size is in the nano-domain. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据