4.5 Article

Growth and Application of Paired Gold Electrode Junctions: Evidence for Nitrosonium Phosphate During Nitric Oxide Oxidation

期刊

ELECTROANALYSIS
卷 20, 期 22, 页码 2403-2409

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/elan.200804354

关键词

Nanogap junctions; Microelectrode; Voltammetry; Generator-collector system; Gold electrode; Sensor; Ferrocene; Nitric oxide

资金

  1. Engineering and Physical Sciences Research Council [GR/T07459/01] Funding Source: researchfish

向作者/读者索取更多资源

A bipotentiostatic gold electrodeposition process is developed to grow gold junctions between two adjacent 100 full diameter platinum disc electrodes. Gold is electrodeposited simultaneously on both electrodes with in automated termination mechanism close to short-circuit conditions. Gap junctions (average gap width ca. 4 mu m) are obtained reproducibly and the behavior of the resulting generator-collector electrode system is investigated for two relevant redox systems. First, the chemically reversible oxidation of 1,1'-ferrocenedimethanol in aqueous 0.1 M KCI is studied. Well-defined feedback currents across the electrode junction in generator-collector mode are recorded down to sub-micromolar analyte concentration. Electrochemically reversible voltammetric responses suggest fast heterogeneous electron transfer and this allows further gap geometry analysis. Second, the (apparently) chemically irreversible oxidation of nitric oxide in 0.1 M phosphate buffer solution (pH 7) at gold electrodes is re-investigated and, perhaps surprisingly, generator-collector feedback currents are observed for a solution phase intermediate. here tentatively assigned to nitrosonium phosphate, NO+H2PO4-. The life time of this intermediate, ca. 10 ms, is surprisingly log, given a typical decay time for free NO+ in water of only nanoseconds. The results are consistent with an estimated nitrosonium phosphate association equilibrium constant, K approximate to 10(7) mol(-1) dm(3). Without further optimization of the electrode junction gap geometry, the determination of nitric oxide down to ca. 10 mu M concentration is achieved. The benefits of smaller junctions and potential analytical applications of paired nanojunction electrodes are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据