4.7 Article

Outer core compositional layering and constraints on core liquid transport properties

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 391, 期 -, 页码 256-262

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.epsl.2014.01.039

关键词

core; light element; seismology; diffusion; early Earth

向作者/读者索取更多资源

A variety of studies of the Earth's outer core report wave speeds near the top of the core slightly lower than reference models for core properties. One interpretation of the slower wavespeed profile is that it could represent a change in the core's light element concentration with depth in the core. I explore the consequences of this idea by interpreting the velocity profile as arising from diffusion gradients imposed in the outer core by various mechanisms. In order to estimate relative diffusion rates for light elements in liquid iron I also examine theories for transport properties of high pressure metallic liquids that are based on hard-sphere models. From the seismic wavespeed profile, an effective diffusivity may be obtained, which ranges from 0.1 to 10 x 10(-7) m(2) s(-1) depending on the particular boundary condition or initial condition chosen. The upper bound of the range is higher than expected from high pressure experiments and models of diffusivity in liquid metals for all elements except H. The lower bound is within the uncertainty of theoretical predictions and experimental determinations given the range of expected outer core temperatures if diffusion involves low Z elements. Plausible agreement arises from a class of models that represent diffusion out of a compositionally different layer existing from the time of the formation of the Earth. If the wavespeed profile in the core is diffusive in nature, the data suggest that it is an original feature of the core. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据