4.4 Article

A Baeyer-Villiger Oxidation Specifically Catalyzed by Human Flavin-Containing Monooxygenase 5

期刊

DRUG METABOLISM AND DISPOSITION
卷 39, 期 1, 页码 61-70

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/dmd.110.035360

关键词

-

向作者/读者索取更多资源

10-((4-Hydroxypiperidin-1-yl) methyl)chromeno[4,3,2-de]phthala-zin-3(2H)-one (E7016), an inhibitor of poly(ADP-ribose) polymerase, is being developed for anticancer therapy. One of the major metabolites identified in preclinical animal studies was the product of an apparent oxidation and ring opening of the 4-hydroxypiperidine. In vitro, this oxidized metabolite could not be generated by incubating E7016 with animal or human liver microsomes. Further studies revealed the formation of this unique metabolite in hepatocytes. In a NAD(P)(+)-dependent manner, this metabolite was also generated by liver S9 fractions and recombinant human flavin-containing monooxygenase (FMO) 5 that was fortified with liver cytosol fractions. In animal and human liver S9, this metabolic pathway could be inhibited by 4-methylpyrazole, bis-p-nitrophenylphosphate (BNPP), or a brief heat treatment at 50 degrees C. Based on these results, the overall metabolic pathway was believed to involve a two-step oxidation process: dehydrogenation of the secondary alcohol in liver cytosol followed by an FMO5-mediated Baeyer-Villiger oxidation in liver microsomes. The two oxidation steps were coupled via regeneration of NAD(P)(+) and NAD(P) H. To further confirm this mechanism, the proposed ketone intermediate was independently synthesized. In an NAD(P) H-dependent manner, the synthetic ketone intermediate was metabolized to the same ring-opened metabolite in animal and human liver microsomes. This metabolic reaction was also inhibited by BNPP or a brief heat treatment at 50 degrees C. Methimazole, the substrate/inhibitor of FMO1 and FMO3, did not inhibit this reaction. The specificity of FMO5 toward catalyzing this Baeyer-Villiger oxidation was further demonstrated by incubating the synthetic ketone intermediate in recombinant enzymes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据