4.4 Article

Mild Hypothermia Alters Midazolam Pharmacokinetics in Normal Healthy Volunteers

期刊

DRUG METABOLISM AND DISPOSITION
卷 38, 期 5, 页码 781-788

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/dmd.109.031377

关键词

-

资金

  1. National Institutes of Health National Institute of General Medical Sciences [GM073031]
  2. National Institutes of Health National Institute of Neurological Disorders and Stroke [NS30318, NS38087]
  3. National Institutes of Health National Center for Research Resources [1KL2-RR024154-02]
  4. NATIONAL CENTER FOR RESEARCH RESOURCES [KL2RR024154] Funding Source: NIH RePORTER
  5. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM073031] Funding Source: NIH RePORTER
  6. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [P20NS030318, P50NS030318, R01NS038087, P01NS030318] Funding Source: NIH RePORTER

向作者/读者索取更多资源

The clinical use of therapeutic hypothermia has been rapidly expanding due to evidence of neuroprotection. However, the effect of hypothermia on specific pathways of drug elimination in humans is relatively unknown. To gain insight into the potential effects of hypothermia on drug metabolism and disposition, we evaluated the pharmacokinetics of midazolam as a probe for CYP3A4/5 activity during mild hypothermia in human volunteers. A second objective of this work was to determine whether benzodiazepines and magnesium administered intravenously would facilitate the induction of hypothermia. Subjects were enrolled in a randomized crossover study, which included two mild hypothermia groups (4 degrees C saline infusions and 4 degrees C saline + magnesium) and two normothermia groups (37 degrees C saline infusions and 37 degrees C saline + magnesium). The lowest temperatures achieved in the 4 degrees C saline + magnesium and 4 degrees C saline infusions were 35.4 +/- 0.4 and 35.8 +/- 0.3 degrees C, respectively. A significant decrease in the formation clearance of the major metabolite 1'-hydroxymidazolam was observed during the 4 degrees C saline + magnesium compared with that in the 37 degrees C saline group (p < 0.05). Population pharmacokinetic modeling identified a significant relationship between temperature and clearance and intercompartmental clearance for midazolam. This model predicted that midazolam clearance decreases 11.1% for each degree Celsius reduction in core temperature from 36.5 degrees C. Midazolam with magnesium facilitated the induction of hypothermia, but shivering was minimally suppressed. These data provided proof of concept that even mild and short-duration changes in body temperature significantly affect midazolam metabolism. Future studies in patients who receive lower levels and a longer duration of hypothermia are warranted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据