4.2 Article Proceedings Paper

Cluster Expansions for Thermodynamics and Kinetics of Multicomponent Alloys

期刊

出版社

SPRINGER
DOI: 10.1007/s11669-015-0427-x

关键词

aluminum alloys; cluster expansion; diffusion modeling; kinetics; multicomponent alloys; thermodynamics

向作者/读者索取更多资源

Cluster expansions have proven a very useful tool to model thermodynamics and kinetics of substitutional alloys in metallic, ionic, and even covalently bonded systems. Cluster expansions are usually obtained with the structure inversion method in which the energies, or other relevant property, of a set of structures are used to obtain expansion coefficients. The expansion coefficients are multipliers of correlation functions which pertain to clusters of sites on the parent lattice. There are significant practical issues associated with obtaining a cluster expansion, such as selecting which structures and especially which correlation functions are required for an adequate description of the energy. While these issues are significant for binary alloys, they become much more daunting when dealing with multicomponent alloys. Moreover, oftentimes interest is not limited to the energetics of the thermodynamic equilibrium state, but the evolution of quenched alloys with time is just as important. The treatment of diffusion within the context of cluster expansions is then another challenge. The article describes a formal method for utilizing cluster expansions for transition states as occur during vacancy mediated diffusion in substitutional alloys. The methods are illustrated with some applications to the prediction of initial coherent precipitates in Al-Cu and Al-Mg-Si alloys.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据