4.3 Article

Functional overlaps between XLF and the ATM-dependent DNA double strand break response

期刊

DNA REPAIR
卷 16, 期 -, 页码 11-22

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.dnarep.2014.01.010

关键词

Cernunnos; ATM; DNA-PKcs; NHEJ; V(D)J recombination; 53BP1

资金

  1. NIH [GM007226-38, A1076210]

向作者/读者索取更多资源

Developing B and T lymphocytes generate programmed DNA double strand breaks (DSBs) during the V(D)J recombination process that assembles exons that encode the antigen-binding variable regions of antibodies. In addition, mature B lymphocytes generate programmed DSBs during the immunoglobulin heavy chain (IgH) class switch recombination (CSR) process that allows expression of different antibody heavy chain constant regions that provide different effector functions. During both V(D)J recombination and CSR, DSB intermediates are sensed by the ATM-dependent DSB response (DSBR) pathway, which also contributes to their joining via classical non-homologous end-joining (C-NHEJ). The precise nature of the interplay between the DSBR and C-NHEJ pathways in the context of DSB repair via C-NHEJ remains under investigation. Recent studies have shown that the XLF C-NHEJ factor has functional redundancy with several members of the ATM-dependent DSBR pathway in C-NHEJ, highlighting unappreciated major roles for both XLF as well as the DSBR in V(D)J recombination, CSR and C-NHEJ in general. In this review, we discuss current knowledge of the mechanisms that contribute to the repair of DSBs generated during B lymphocyte development and activation with a focus on potential functionally redundant roles of XLF and ATM-dependent DSBR factors. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据