4.3 Article

XRCC4 controls nuclear import and distribution of Ligase IV and exchanges faster at damaged DNA in complex with Ligase IV

期刊

DNA REPAIR
卷 10, 期 12, 页码 1232-1242

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.dnarep.2011.09.012

关键词

DNA double-strand break repair; Non-homologous end joining NHEJ; DNA Ligase IV; XRCC4; Nuclear import

资金

  1. German Research Council DFG [GRK 1033, SFB 728]

向作者/读者索取更多资源

Non-homologous end-joining (NHEJ) is one major pathway for the repair of double-stranded DNA breaks in mammals. Following break recognition, alignment and processing, broken DNA ends are finally rejoined by the essential DNA Ligase IV. In the cell, Ligase IV is unable to function without its constitutive interaction partner XRCC4 and becomes unstable when it is missing, and it has been assumed that XRCC4 may also be required for recruitment of Ligase IV to repair sites. To investigate the function of complex formation between both proteins directly in the living cell, we stably expressed them as bio-fluorescent fusion proteins in human HT-1080 cell clones. Ligase IV or XRCC4 were expressed either alone or both were co-expressed at a roughly equimolar ratio. Labelled proteins were overexpressed manifold in comparison to endogenously expressed proteins. We show that over-expressed Ligase IV was only partially imported into the nucleus and showed a diffuse distribution there, whereas XRCC4 expressed alone was entirely nuclear with a distinct exclusion from nucleoli. When Ligase IV was co-expressed with XRCC4, both proteins formed the natural complex, and Ligase IV was not only efficiently imported but also resembled the sub-nuclear distribution of XRCC4. In addition, Ligase IV, when in complex with XRCC4, acquired a delayed nuclear reimport after mitotic cell division of XRCC4. We further determined by photobleaching the kinetics with which the proteins exchange at UVA laser-irradiated nuclear sites between damage-bound and diffusing states. We found that the dynamic exchange rate of the Ligase IV/XRCC4 complex at micro-irradiated sites was faster than that of XRCC4 expressed alone. In summary, our findings demonstrate a novel function of XRCC4 in controlling nuclear import and sub-nuclear distribution of Ligase IV, and they suggest that XRCC4 modulates the dynamic interaction of the Ligase IV/XRCC4 complex with the NHEJ machinery at double-stranded DNA breaks. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据