4.7 Article

Increased neuronal nitric oxide synthase dimerisation is involved in rat and human pancreatic beta cell hyperactivity in obesity

期刊

DIABETOLOGIA
卷 54, 期 11, 页码 2856-2866

出版社

SPRINGER
DOI: 10.1007/s00125-011-2264-8

关键词

Beta cell; Insulin secretion; NO synthase; Obesity; Type 2 diabetes

资金

  1. Juvenile Diabetes Research Foundation [31-2008-416]
  2. Fondation pour la Recherche Medicale (FRM)

向作者/读者索取更多资源

Pancreatic beta cell hyperactivity is known to occur in obesity, particularly in insulin-resistant states. Our aim was to investigate whether changes in neuronal nitric oxide synthase (nNOS) function affect beta cell compensation in two relevant models: the Zucker fa/fa rats and pancreatic islets from obese humans. Glucose-induced insulin response was evaluated in the isolated perfused rat pancreas and in human pancreatic islets from obese individuals. Expression of nNOS (also known as NOS1) and subcellular localisation of nNOS were studied by quantitative RT-PCR, immunoblotting, immunofluorescence and electron microscopy. Pancreatic beta cells from Zucker fa/fa rats and obese individuals were found to be hyper-responsive to glucose. Pharmacological blockade of nNOS was unable to modify beta cell response to glucose in fa/fa rats and in islets from obese individuals, suggesting an abnormal control of insulin secretion by the enzyme. In both cases, nNOS activity in islet cell extracts remained unchanged, despite a drastic increase in nNOS protein and an enhancement in the dimer/monomer ratio, pointing to the presence of high amounts of catalytically inactive enzyme. This relative decrease in activity could be mainly related to increases in islet asymmetric dimethyl-arginine content, an endogenous inhibitor of nNOS activity. In addition, mitochondrial nNOS level was decreased, which contrasts with a strongly increased association with insulin granules. Increased nNOS production and dimerisation, together with a relative decrease in catalytic activity and relocalisation, are involved in beta cell hyperactivity in insulin-resistant rats but also in human islets isolated from obese individuals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据