4.7 Article

IGF-I mediates regeneration of endocrine pancreas by increasing beta cell replication through cell cycle protein modulation in mice

期刊

DIABETOLOGIA
卷 51, 期 10, 页码 1862-1872

出版社

SPRINGER
DOI: 10.1007/s00125-008-1087-8

关键词

beta cells; bone marrow-derived cells; cell cycle; islet regeneration; replication

资金

  1. Ministerio de Educacion, Cultura y Deporte, Spain
  2. Direccio General de Recerca, Generalitat de Catalunya
  3. Plan Nacional I + D + I [SAF2005-02381]
  4. Instituto de Salud Carlos III (CIBER de Diabetes y Enfermedades Metabolicas Asociadas), Spain
  5. European Community [FP6-2004-512145]

向作者/读者索取更多资源

Aims/hypothesis Recovery from diabetes requires restoration of beta cell mass. Igf1 expression in beta cells of transgenic mice regenerates the endocrine pancreas during type 1 diabetes. However, the IGF-I-mediated mechanism(s) restoring beta cell mass are not fully understood. Here, we examined the contribution of pre-existing beta cell proliferation and transdifferentiation of progenitor cells from bone marrow in IGF-I-induced islet regeneration. Methods Streptozotocin (STZ)-treated Igf1-expressing transgenic mice transplanted with green fluorescent protein (GFP)-expressing bone marrow cells were used. Bone marrow cell transdifferentiation and beta cell replication were measured by GFP/insulin and by the antigen identified by monoclonal antibody Ki67/insulin immunostaining of pancreatic sections respectively. Key cell cycle proteins were measured by western blot, quantitative RT-PCR and immunohistochemistry. Results Despite elevated IGF-I production, recruitment and differentiation of bone marrow cells to beta cells was not increased either in healthy or STZ-treated transgenic mice. In contrast, after STZ treatment, IGF-I overproduction decreased beta cell apoptosis and increased beta cell replication by modulating key cell cycle proteins. Decreased nuclear levels of cyclin-dependent kinase inhibitor 1B (p27) and increased nuclear localisation of cyclin-dependent kinase (CDK)-4 were consistent with increased beta cell proliferation. However, islet expression of cyclin D1 increased only after STZ treatment. In contrast, higher levels of cyclin-dependent kinase inhibitor 1A (p21) were detected in islets from non-STZ-treated transgenic mice. Conclusions/interpretation These findings indicate that IGF-I modulates cell cycle proteins and increases replication of pre-existing beta cells after damage. Therefore, our study suggests that local production of IGF-I may be a safe approach to regenerate endocrine pancreas to reverse diabetes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据