4.7 Article

Identification of De Novo Synthesized and Relatively Older Proteins Accelerated Oxidative Damage to De Novo Synthesized Apolipoprotein A-1 in Type 1 Diabetes

期刊

DIABETES
卷 59, 期 10, 页码 2366-2374

出版社

AMER DIABETES ASSOC
DOI: 10.2337/db10-0371

关键词

-

资金

  1. Mayo Clinic Center for Translational Science Activities (CTSA)
  2. National Institutes of Health (NIH) [R33-DK-70179, R01-DK-41793, T32-DK-07352]
  3. NIH CTSA [UL1 RR024150]

向作者/读者索取更多资源

OBJECTIVE The accumulation of old and damaged proteins likely contributes to complications of diabetes, but currently no methodology is available to measure the relative age of a specific protein alongside assessment of posttranslational modifications (PTM). To accomplish our goal of studying the impact of insulin deficiency and hyperglycemia in type 1 diabetes upon accumulation of old damaged isoforms of plasma apolipoprotein A-1 (ApoA-1), we sought to develop a novel methodology, which is reported here and can also be applied to other specific proteins. RESEARCH DESIGN AND METHODS To label newly synthesized proteins, [ring-C-13(6)]phenylalanine was intravenously infused for 8 h in type 1 diabetic participants (n = 7) during both insulin treatment and 8 h of insulin deprivation and in nondiabetic participants (n = 7). ApoA-1 isoforms were purified by two-dimensional gel electrophoresis (2DGE) and assessment of protein identity, PTM, and [ring-C-13(6)]phenylalanine isotopic enrichment (IE) was performed by tandem mass spectrometry. RESULTS Five isoforms of plasma ApoA-1 were identified by 2DGE including ApoA-1 precursor (pro-ApoA-1) that contained the relatively highest IE, whereas the older forms contained higher degrees of damage (carbonylation, deamidation) and far less IE. In type 1 diabetes, the relative ratio of IE of [ring-C-13(6)]phenylalanine in an older isoform versus pro-ApoA-1 was higher during insulin deprivation, indicating that de novo synthesized pro-ApoA-1 more rapidly accumulated damage, converting to mature ApoA-1. CONCLUSIONS We developed a mass spectrometry-based methodology to identify the relative age of protein isoforms. The results demonstrated accelerated oxidative damage to plasma ApoA-1, thus offering a potential mechanism underlying the impact of poor glycemic control in type 1 diabetic patients that affects a patient's risk for vascular disease. Diabetes 59:2366-2374, 2010

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据