4.7 Article

Flocculation activity of novel ferric chloride-polyacrylamide (FeCl3-PAM) hybrid polymer

期刊

DESALINATION
卷 266, 期 1-3, 页码 108-113

出版社

ELSEVIER
DOI: 10.1016/j.desal.2010.08.009

关键词

Hybrid polymer; Ferric chloride; Polyacrylamide; Kaolin suspension; Dye wastewater; Flocculation

资金

  1. Universiti Sains Malaysia

向作者/读者索取更多资源

A ferric chloride-polyacrylamide inorganic-organic hybrid polymer has been synthesized using a ferric chloride/polyacrylamide ratio of 1:1 via free radical solution polymerization. A redox initiation system - (NH4)(2)S2O8 and NaHSO3 was used to initiate the polymerization at 50 degrees C in aqueous medium. The ferric chloride-polyacrylamide hybrid polymer was characterized using Fourier transform infrared (FT-IR) spectrometer to determine their functional groups in the hybrid polymer chain. The FeCl3-PAM hybrid polymer was tested for flocculating activities on kaolin suspension and Terasil Red R dye wastewater. Parameters such as solution pH and FeCl3-PAM hybrid polymer dosage have been studied. One-way ANOVA shows that pH has a significant impact (p < 0.05) in flocculating both kaolin suspension and Terasil Red R wastewater. The results show a minimum dosage of 2 mg/L is able to remove more than 99% of turbidity in kaolin suspension at pH 2. FeCl3-PAM hybrid polymer also shows its capability in flocculating Terasil Red R dye wastewater. It is able to reduce 89% of COD and 99% of colour at pH 5 using 500 mg/L of dosage. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Chemical

Effects of cationization hybridized biopolymer from Bacillus subtilis on flocculating properties

Siee-Kung Khiew, Tjoon-Tow Teng, Yee-Shian Wong, Soon-An Ong, Norli Ismail, A. F. M. Alkarkhi

DESALINATION AND WATER TREATMENT (2016)

Article Chemistry, Multidisciplinary

Carbonization of Elaeis guineensis frond fiber: Effect of heating rate and nitrogen gas flow rate for adsorbent properties enhancement

Ling Wei Low, Tjoon Tow Teng, Abbas F. M. Alkarkhi, Norhashimah Morad, Baharin Azahari

JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY (2015)

Article Engineering, Chemical

Synthesis of magnetic nanocomposites (AMMC-Fe3O4) for cationic dye removal: Optimization, kinetic, isotherm, and thermodynamics analysis

Kah Aik Tan, Norhashimah Morad, Tjoon Tow Teng, Ismail Norli

JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS (2015)

Article Chemistry, Multidisciplinary

KINETIC REMOVAL OF Cr6+ IN AQUEOUS SOLUTION BY CARBOXYMETHYL CELLULOSE-STABILIZED NANO ZERO-VALENT IRON PARTICLES

Afizah Ayob, Salina Alias, Farrah Aini Dahlan, Ragunathan Santiagoo, Ahmad Zuhairi Abdullah, Tjoon Tow Teng

MACEDONIAN JOURNAL OF CHEMISTRY AND CHEMICAL ENGINEERING (2015)

Article Medicine, Legal

Application of acid-modified Imperata cylindrica powder for latent fingerprint development

Wei Zeng Low, Bee Ee Khoo, Zalina Binti Abdul Aziz, Ling Wei Low, Tjoon Tow Teng, Ahmad Fahmi Lim Bin Abdullah

SCIENCE & JUSTICE (2015)

Article Chemistry, Multidisciplinary

Biosorption of Pb(II) and Fe(III) from aqueous co-solutions using chemically pretreated oil palm fronds

Shabnam Khosravihaftkhany, Norhashimah Morad, Ahmad Zuhairi Abdullah, Tjoon Tow Teng, Norli Ismail

RSC ADVANCES (2015)

Article Chemistry, Multidisciplinary

Nickel ion coupled counter complexation and decomplexation through a modified supported liquid membrane system

Amir Talebi, Tjoon Tow Teng, Abbas F. M. Alkarkhi, Norli Ismail

RSC ADVANCES (2015)

Article Environmental Sciences

Catalytic thermolysis in treating Cibacron Blue in aqueous solution: Kinetics and degradation pathway

Claire Xin-Hui Su, Tjoon-Tow Teng, Yee-Shian Wong, Norhashimah Morad, Mohd Rafatullah

CHEMOSPHERE (2016)

Article Biotechnology & Applied Microbiology

Intermolecular degradation of aromatic compound and its derivatives via combined sequential and hybridized process

Yen-Yie Lau, Yee-Shian Wong, Soon-An Ong, Nabilah Aminah Lutpi, Sung-Ting Sam, Tjoon-Tow Teng, Kim-Mun Eng

Summary: This study demonstrates the effective treatment and degradation pathway of environmental emerging pollutants through a combined treatment method of thermolysis and coagulation-flocculation. The research provides new insights and valuable guidance for establishing efficient multiple-step wastewater treatments.

BIOPROCESS AND BIOSYSTEMS ENGINEERING (2023)

Review Engineering, Environmental

Bacterial bioflocculants: A review of recent advances and perspectives

Mohammad Shahadat, Tjoon Tow Teng, Mohd. Rafatullah, Z. A. Shaikh, T. R. Sreekrishnan, S. Wazed Ali

CHEMICAL ENGINEERING JOURNAL (2017)

Review Engineering, Environmental

Combination and hybridisation of treatments in dye wastewater treatment: A review

Claire Xin-Hui Su, Ling Wei Low, Tjoon Tow Teng, Yee Shian Wong

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2016)

Proceedings Paper Energy & Fuels

PERFORMANCE COMPARISON BETWEEN THERMOPHILIC AND MESOPHILIC ANAEROBIC SUSPENDED GROWTH CLOSED BIOREACTOR OF PALM OIL MILL EFFLUENT

Yee-Shian Wong, Tjoon-Tow Teng, Norhashimah Morad, Mohd Rafatullah, Yee-Shian Wong, Soon-An Ong

ENERGY, ENVIRONMENTAL & SUSTAINABLE ECOSYSTEM DEVELOPMENT (2016)

Proceedings Paper Energy & Fuels

TREATMENT OF TEXTILE INDUSTRY WASTEWATER USING COMBINED PROCESS OF THERMOLYSIS AND COAGULATION-FLOCCULATION: A COMPARISON BETWEEN THE USE OF MAGNESIUM CHLORIDE COAGULANT AND MAGNESIUM CHLORIDE-ORGANIC HYBRID POLYMER AS COAGULANT

Claire Xin-Hui Su, Tjoon-Tow Teng, Norhashimah Morad, Mohd Rafatullah, Yee-Shian Wong

ENERGY, ENVIRONMENTAL & SUSTAINABLE ECOSYSTEM DEVELOPMENT (2016)

Proceedings Paper Energy & Fuels

EFFECT OF TOSYL GROUP ON DYE DEGRADATION RATE BY USING LATERITE SOIL AS NATURAL| COAGULANT-FLOCCULANT

Yen-Yie Lau, Tjoon-Tow Teng, Norhashimah Morad, Mohd Rafatullah, Yee-Shian Wong, Soon-An Ong

ENERGY, ENVIRONMENTAL & SUSTAINABLE ECOSYSTEM DEVELOPMENT (2016)

Article Chemistry, Multidisciplinary

Degradation of cationic and anionic dyes in coagulation-flocculation process using bi-functionalized silica hybrid with aluminum-ferric as auxiliary agent

Yen-Yie Lau, Yee-Shian Wong, Tjoon-Tow Teng, Norhashimah Morad, Mohd Rafatullah, Soon-An Ong

RSC ADVANCES (2015)

Article Engineering, Chemical

Comparative analysis of integrating standalone renewable energy sources with brackish water reverse osmosis plants: Technical and economic perspectives

Arvin Sohrabi, Mousa Meratizaman, Shuli Liu

Summary: This paper simulates and discusses possible solutions to improve the economic and technical performances of a battery-less renewable energy-powered BWRO system under real climate conditions. The study finds that the photovoltaic-based system performs better in terms of specific energy consumption and unused energy ratio.

DESALINATION (2024)

Article Engineering, Chemical

An innovative process design of seawater desalination toward hydrogen liquefaction applied to a ship's engine: An economic analysis and intelligent data-driven learning study/optimization

Chunlan Pan, Xiaoyin Hu, Vishal Goyal, Theyab R. Alsenani, Salem Alkhalaf, Tamim Alkhalifah, Fahad Alturise, Hamad Almujibah, H. Elhosiny Ali

Summary: This paper introduces a novel waste heat recovery method using the hot flue gas from a ship's engine to produce liquefied hydrogen while meeting the ship's air-conditioning requirement. A comprehensive feasibility assessment is conducted and an artificial neural network with a multiobjective grey wolf optimization method is used for optimization. The findings indicate the highest mean sensitivity index of the flash temperature and the best optimization scenario for exergy efficiency, CO2 emission reduction, and liquefied hydrogen cost.

DESALINATION (2024)

Article Engineering, Chemical

Selective separation of nitrate from chloride using PVDF-based anion-exchange membranes

Daniele Chinello, Jan Post, Louis C. P. M. de Smet

Summary: In this study, PVDF-based anion-exchange membranes were designed to selectively separate nitrate from chloride. Experimental data showed that increasing the concentration of PVDF enhanced nitrate transport but also increased the membrane electrical resistance. The selectivity of nitrate was found to be independent of the membrane thickness and mainly driven by the increased affinity between the anion and the membrane.

DESALINATION (2024)

Article Engineering, Chemical

Functionalized carbon 1D/2D nanomaterials for effective water desalination: Synthesis, applications and cost issues. An overview

Umar Noor, Muhammad Fayyaz Farid, Ammara Sharif, Amna Saleem, Zubair Nabi, Muhammad Furqan Mughal, Kiran Abbas, Toheed Ahmed

Summary: Global water scarcity is increasing, and water desalination is an important solution. Multifunctional advanced materials, such as membrane materials and solar-driven desalination, play a crucial role in water desalination. Additionally, these materials can be used for water purification, wastewater treatment, and pollutant elimination.

DESALINATION (2024)

Article Engineering, Chemical

sCO2 power cycle/reverse osmosis distillation system for water-electricity cogeneration in nuclear powered ships and submarines

Emrah Gumus

Summary: With growing global concerns about climate change and environmental impacts, the use of nuclear energy in naval vessels offers a cleaner and more efficient solution to reduce emissions and address water and energy supply challenges. This study explores a novel system that combines a nuclear-driven supercritical carbon dioxide power cycle with reverse osmosis cogeneration to meet the water and electricity demands in maritime operations, enhancing the sustainability, efficiency, and self-sufficiency of naval vessels. The results indicate that the system has the potential to be a viable and effective solution for naval operations.

DESALINATION (2024)

Article Engineering, Chemical

Zwitterionic material for construction of an antifouling polyamide thin film composite membrane

Dao Thi Thanh Huyen, Saikat Sinha Ray, Young -Nam Kwon

Summary: This study focuses on the modification of a commercially available polyamide thin-film composite membrane with a zwitterionic material to enhance its fouling resistance. The modified membrane shows improved salt rejection and reduced permeability compared to the pristine membrane. Fouling tests demonstrate that the modified membrane has a lower fouling ratio and higher recovery ratio. The enhanced antifouling characteristics are attributed to the improved hydrophilicity resulting from the zwitterionic brushes and the salting-in effect.

DESALINATION (2024)

Article Engineering, Chemical

Towards pilot scale flow-electrode capacitive deionization

Niklas Koeller, Lukas Mankertz, Selina Finger, Christian J. Linnartz, Matthias Wessling

Summary: This study presents a methodology to scale up Flow-electrode Capacitive Deionization (FCDI) technology from lab-scale to pilot-scale systems. By increasing membrane area and using a stacking approach, the FCDI modules were successfully scaled up and achieved a salt transfer rate comparable to lab-scale systems. This provides a foundation for future assessments of energy demand and economics.

DESALINATION (2024)

Article Engineering, Chemical

Efficient lithium recovery from simulated brine using a hybrid system: Direct contact membrane distillation (DCMD) and electrically switched ion exchange (ESIX)

Mona Gulied, Sifani Zavahir, Tasneem Elmakki, Hyunwoong Park, Guillermo Hijos Gago, Ho Kyong Shon, Dong Suk Han

Summary: This study introduces a novel hybrid system that combines direct contact membrane distillation (DCMD) and electrically switched ion exchange (ESIX) to facilitate seawater reverse osmosis (SWRO) brine enrichment and selective lithium recovery.

DESALINATION (2024)

Article Engineering, Chemical

Enhanced ammonia recovery from strong ammonia wastewater via a transmembrane electro-chemisorption system with authigenic acid and base

Zhiqiang Zhang, Ruifeng Deng, Jiao Zhang, Lu She, Guangfeng Wei, Renyong Jia, Pengyu Xiang, Siqing Xia

Summary: A transmembrane electro-chemisorption system with authigenic acid and base was developed for enhancing ammonia recovery from strong ammonia wastewater. The system efficiently transformed ammonium into free ammonia, which was then adsorbed and recovered through transmembrane chemisorption. This system yielded pure (NH4)2SO4 product and produced valuable byproducts of pure hydrogen and oxygen. Higher applied voltage resulted in better ammonia recovery.

DESALINATION (2024)

Article Engineering, Chemical

Development of high-integrity reverse osmosis membranes for enhanced removal of microorganisms

Alena Popova, Sandrine Boivin, Takuji Shintani, Takahiro Fujioka

Summary: This study aimed to produce a high-integrity RO membrane by forming a polyamide skin layer on a TE support layer, in order to enhance the integrity of the membrane and improve the microbiological safety of potable water reuse.

DESALINATION (2024)

Article Engineering, Chemical

Reducing the specific energy use of seawater desalination with thermally enhanced reverse osmosis

Sanjana Yagnambhatt, Saber Khanmohammadi, Jonathan Maisonneuve

Summary: This study investigates the concept of using heat to enhance reverse osmosis (RO) desalination. The effect of temperature on water permeate flux, specific energy, permeate quality, and applied operating pressures is evaluated using an analytical model. The results suggest that under specific conditions, the tradeoff between savings in mechanical pump work and thermal energy input in thermally-enhanced RO can be favorable, leading to overall energy savings.

DESALINATION (2024)

Article Engineering, Chemical

Selective membrane capacitive deionization for superior lithium recovery

Jiangju Si, Chenrui Xue, Shun Li, Linchao Yang, Weiwei Li, Jie Yang, Jihong Lan, Ningbo Sun

Summary: To meet the huge demand for lithium resources, there is an urgent need to develop a new efficient technology for lithium recovery from salt-lake brines. In this study, a selective membrane capacitive deionization system is reported, which achieves high lithium recovery capacity and rate through the use of materials with efficient intercalated pseudo-capacitance and a high specific area porous carbon. The use of a modified thin-coated membrane allows for selective Li+ recovery, and adjusting the concentrations of Li+ and Mg2+ in the feed solution enables higher Li+/Mg2+ selectivity.

DESALINATION (2024)

Article Engineering, Chemical

Augmentation of solar still distillation performance using waste heat energy and guiding vanes: A field study

Mohamed R. Salem, R. Y. Sakr, Ghazy M. R. Assassa, Omar A. Aly

Summary: This research proposes a new method of using wasted thermal energies as an additional heating source for solar still distillation units (SSDUs) to increase productivity and reduce pollution and global warming. By testing two SSDUs, the study shows that heating airflow can raise temperatures, enhance freshwater production, and improve system thermal efficiency.

DESALINATION (2024)

Article Engineering, Chemical

Novel fabric-based 3D photothermal evaporator with advanced light-harvesting and thermal management design

Qimeng Sun, Miao Sun, Linyan Yang, Yuan Gao, Xinghai Zhou, Lihua Lyu, Chunyan Wei

Summary: This study presents an innovative design and fabrication of a fabric-based conical roll (FCR) evaporator, which enables low-temperature evaporation and achieves high evaporation efficiency with excellent thermal management ability. The evaporator has demonstrated advanced light-harvesting capability and can produce freshwater that meets drinking water standards, showing great potential for applications in desalination and sewage treatment.

DESALINATION (2024)

Article Engineering, Chemical

A dual-functional lignin containing pulp foam for solar evaporation and contaminant adsorption

Yidong Zhang, Wangfang Deng, Meiyan Wu, Chao Liu, Guang Yu, Qiu Cui, Pedram Fatehi, Chunlin Xu, Bin Li

Summary: In this study, a novel polydopamine-functionalized lignin-containing pulp foam evaporator with high-efficiency desalination and multi-contaminant adsorption capabilities was designed. The foam evaporator showed excellent light absorption, water absorption, thermal conductivity, and chelation abilities, allowing for solar evaporation and contaminant adsorption synergistically. It also exhibited potential applications in metal ion concentration and contaminated seawater treatments, and demonstrated superior biodegradability compared to poly-styrene foam. This foam material holds promise for developing multifunctional photo-thermal systems for solar-driven water purification.

DESALINATION (2024)