4.7 Article

Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto Trametes versicolor biomass

期刊

DESALINATION
卷 276, 期 1-3, 页码 310-316

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.desal.2011.03.067

关键词

Biosorption; Trametes versicolor; Kinetics; Isotherms; Thermodynamics

向作者/读者索取更多资源

The ability of Trametes versicolor biomass for biosorption of Cu(II) ions from aqueous solution was studied in batch experiments. The effect of relevant parameters such as function of pH, biomass dosage, contact time, initial metal ion concentration and temperature was evaluated. Further, the biosorbent was characterized by using Fourier Transform Infrared Spectroscopy (FTIR) and BET Surface area analysis. Experimental data were analyzed in terms of pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models. The results showed that the biosorption process of Cu(II) ions followed well pseudo-second order kinetics. The biosorption data of Cu(II) ions at 303, 313 and 323 K are fitted to Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherms. Biosorption of Cu(II) onto T. versicolor biomass followed the Langmuir isotherm model (R-2 = 0.999) with the maximum biosorption capacity of 140.9 mg/g. The calculated thermodynamic parameters such as Delta G, Delta H and Delta S showed that the biosorption of Cu(II) ions onto T. versicolor biomass was feasible, spontaneous and endothermic at 303-323 K. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Multidisciplinary

Inactive Fusarium Fungal strains (ZSY and MJY) isolation and application for the removal of Pb(II) ions from aqueous environment

Jianyou Long, Gutha Yuvaraja, Shuyi Zhou, Jianying Mo, Huosheng Li, Dinggui Luo, Di Yun Chen, Lingjun Kong, Munagapati Venkata Subbaiah, Guda Mallikarjuna Reddy

JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY (2019)

Article Chemistry, Organic

Multicomponent One-pot Synthesis of Oxadiazole Included Pyranopyrazoles as Promising Antioxidant Agents

Guda Mallikarjuna Reddy, Di Yun Chen, Munagapati Venkata Subbaiah, Long Jianyou, Jet-Chau Wen

JOURNAL OF HETEROCYCLIC CHEMISTRY (2019)

Article Chemistry, Physical

Enhanced adsorption performance of Reactive Red 120 azo dye from aqueous solution using quaternary amine modified orange peel powder

Venkata Subbaiah Munagapati, Jet-Chau Wen, Chih-Long Pan, Yuvaraja Gutha, Jyh-Horng Wen

JOURNAL OF MOLECULAR LIQUIDS (2019)

Article Biochemistry & Molecular Biology

Modification of chitosan macromolecule and its mechanism for the removal of Pb(II) ions from aqueous environment

Gutha Yuvaraja, Yixiong Pang, Di-Yun Chen, Ling-Jun Kong, Sajid Mehmood, Munagapati Venkata Subbaiah, Devineni Subba Rao, Chandra Mouli Pavuluri, Jet-Chau Wen, Guda Mallikarjuna Reddy

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2019)

Article Environmental Sciences

Adsorptive removal of anionic dye (Reactive Black 5) from aqueous solution using chemically modified banana peel powder: kinetic, isotherm, thermodynamic, and reusability studies

Venkata Subbaiah Munagapati, Jet-Chau Wen, Chih-Long Pan, Yuvaraja Gutha, Jyh-Horng Wen, Guda Mallikarjuna Reddy

INTERNATIONAL JOURNAL OF PHYTOREMEDIATION (2020)

Article Biochemistry & Molecular Biology

Preparation of novel aminated chitosan schiff's base derivative for the removal of methyl orange dye from aqueous environment and its biological applications

Gutha Yuvaraja, Di-Yun Chen, Janak L. Pathak, Jianyou Long, Munagapati Venkata Subbaiah, Jet-Chau Wen, Chih-Long Pan

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2020)

Article Chemistry, Organic

Design, synthesis of tri-substituted pyrazole derivatives as promising antimicrobial agents and investigation of structure activity relationships

Guda Mallikarjuna Reddy, Jarem Raul Garcia, Gutha Yuvaraja, Munagapati Venkata Subbaiah, Jet-Chau Wen

JOURNAL OF HETEROCYCLIC CHEMISTRY (2020)

Article Biochemistry & Molecular Biology

Removal of U(VI) from aqueous and polluted water solutions using magnetic Arachis hypogaea leaves powder impregnated into chitosan macromolecule

Gutha Yuvaraja, Ning-Chao Zheng, Yixiong Pang, Minhua Su, Di-Yun Chen, Ling-Jun Kong, Sajid Mehmood, Munagapati Venkata Subbaiah, Jet-Chau Wen

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2020)

Article Biochemistry & Molecular Biology

Impregnation of magnetic - Momordica charantia leaf powder into chitosan for the removal of U(VI) from aqueous and polluted wastewater

Gutha Yuvaraja, Minhua Su, Di-Yun Chen, Yixiong Pang, Ling-Jun Kong, Munagapati Venkata Subbaiah, Jet-Chau Wen, Guda Mallikarjuna Reddy

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2020)

Article Chemistry, Physical

Anionic congo red dye removal from aqueous medium using Turkey tail (Trametes versicolor) fungal biomass: adsorption kinetics, isotherms, thermodynamics, reusability, and characterization

Venkata Subbaiah Munagapati, Hsin-Yu Wen, Jet-Chau Wen, Yuvaraja Gutha, Zhong Tian, Guda Mallikarjuna Reddy, Jarem Raul Garcia

Summary: Turkey tail fungus was used as an adsorbent for the removal of CR from aqueous solution, showing high adsorption capacity. The adsorption process was influenced by factors such as pH and temperature, and the PSO model was effective in describing the adsorption kinetics. The study demonstrated TTFB's potential as a recyclable and efficient adsorbent for CR removal.

JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY (2021)

Article Environmental Sciences

Removal of anionic (Acid Yellow 17 and Amaranth) dyes using aminated avocado (Persea americana) seed powder: adsorption/desorption, kinetics, isotherms, thermodynamics, and recycling studies

Venkata Subbaiah Munagapati, Hsin-Yu Wen, Yarramuthi Vijaya, Jet-Chau Wen, Jhy-Horng Wen, Zhong Tian, Guda Mallikarjuna Reddy, Jarem Raul Garcia

Summary: The study focused on utilizing avocado seed to synthesize an adsorbent for removing Acid Yellow 17 and Amaranth anionic dyes from aqueous solutions. The research filled a gap in the literature by introducing a chemically modified adsorbent synthesis, significantly enhancing the adsorption efficiency of the selected dyes.

INTERNATIONAL JOURNAL OF PHYTOREMEDIATION (2021)

Review Biochemistry & Molecular Biology

Recent advances in the development of MXenes/cellulose based composites: A review

Jong Sung Won, Cheera Prasad, Seong-Geun Jeong, P. Rosaiah, A. Subba Reddy, Zubair Ahmad, Sambasivam Sangaraju, Hyeong Yeol Choi

Summary: MXenes are a new class of two-dimensional materials that have been widely utilized in various fields due to their controlled characteristics. In cellulose research, MXene hybrids are effective composites that improve the mechanical properties and prevent MXene accumulation. Cellulose/MXene composites have applications in electrical, materials, chemical, mechanical, environmental, and biomedical engineering.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2023)

Review Chemistry, Analytical

Characteristics, properties, and analytical and bio-analytical methods of enzalutamide: A review

Ramachandra Bondigalla, Gangu Naidu Challa, Srinivasa Rao Yarraguntla, Raju Bandu, Subba Reddy Alla

Summary: Enzalutamide is a powerful second-generation androgen receptor inhibitor used in the treatment of metastatic castration-resistant prostate cancer. It has three major anticancer mechanisms, including inhibiting the binding of androgens to androgen receptors, inhibiting nuclear translocation of androgen receptors, and inhibiting binding of androgen receptors to DNA. Therefore, Enzalutamide is very important in anticancer therapy.

SEPARATION SCIENCE PLUS (2023)

Article Materials Science, Multidisciplinary

Synthesis of novel ZSM-22 zeolite from Taiwanese coal fly ash for the selective separation of Rhodamine 6G

Anjani R. K. Gollakota, Vikranth Volli, Venkata S. Munagapati, Jet-Chau Wen, Chi-Min Shu

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T (2020)

Article Chemistry, Multidisciplinary

Application of ZnO nanorods as an adsorbent material for the removal of As(III) from aqueous solution: kinetics, isotherms and thermodynamic studies

Gutha Yuvaraja, Cheera Prasad, Yarramuthi Vijaya, Munagapati Venkata Subbaiah

INTERNATIONAL JOURNAL OF INDUSTRIAL CHEMISTRY (2018)

Article Engineering, Chemical

Comparative analysis of integrating standalone renewable energy sources with brackish water reverse osmosis plants: Technical and economic perspectives

Arvin Sohrabi, Mousa Meratizaman, Shuli Liu

Summary: This paper simulates and discusses possible solutions to improve the economic and technical performances of a battery-less renewable energy-powered BWRO system under real climate conditions. The study finds that the photovoltaic-based system performs better in terms of specific energy consumption and unused energy ratio.

DESALINATION (2024)

Article Engineering, Chemical

An innovative process design of seawater desalination toward hydrogen liquefaction applied to a ship's engine: An economic analysis and intelligent data-driven learning study/optimization

Chunlan Pan, Xiaoyin Hu, Vishal Goyal, Theyab R. Alsenani, Salem Alkhalaf, Tamim Alkhalifah, Fahad Alturise, Hamad Almujibah, H. Elhosiny Ali

Summary: This paper introduces a novel waste heat recovery method using the hot flue gas from a ship's engine to produce liquefied hydrogen while meeting the ship's air-conditioning requirement. A comprehensive feasibility assessment is conducted and an artificial neural network with a multiobjective grey wolf optimization method is used for optimization. The findings indicate the highest mean sensitivity index of the flash temperature and the best optimization scenario for exergy efficiency, CO2 emission reduction, and liquefied hydrogen cost.

DESALINATION (2024)

Article Engineering, Chemical

Selective separation of nitrate from chloride using PVDF-based anion-exchange membranes

Daniele Chinello, Jan Post, Louis C. P. M. de Smet

Summary: In this study, PVDF-based anion-exchange membranes were designed to selectively separate nitrate from chloride. Experimental data showed that increasing the concentration of PVDF enhanced nitrate transport but also increased the membrane electrical resistance. The selectivity of nitrate was found to be independent of the membrane thickness and mainly driven by the increased affinity between the anion and the membrane.

DESALINATION (2024)

Article Engineering, Chemical

Functionalized carbon 1D/2D nanomaterials for effective water desalination: Synthesis, applications and cost issues. An overview

Umar Noor, Muhammad Fayyaz Farid, Ammara Sharif, Amna Saleem, Zubair Nabi, Muhammad Furqan Mughal, Kiran Abbas, Toheed Ahmed

Summary: Global water scarcity is increasing, and water desalination is an important solution. Multifunctional advanced materials, such as membrane materials and solar-driven desalination, play a crucial role in water desalination. Additionally, these materials can be used for water purification, wastewater treatment, and pollutant elimination.

DESALINATION (2024)

Article Engineering, Chemical

sCO2 power cycle/reverse osmosis distillation system for water-electricity cogeneration in nuclear powered ships and submarines

Emrah Gumus

Summary: With growing global concerns about climate change and environmental impacts, the use of nuclear energy in naval vessels offers a cleaner and more efficient solution to reduce emissions and address water and energy supply challenges. This study explores a novel system that combines a nuclear-driven supercritical carbon dioxide power cycle with reverse osmosis cogeneration to meet the water and electricity demands in maritime operations, enhancing the sustainability, efficiency, and self-sufficiency of naval vessels. The results indicate that the system has the potential to be a viable and effective solution for naval operations.

DESALINATION (2024)

Article Engineering, Chemical

Zwitterionic material for construction of an antifouling polyamide thin film composite membrane

Dao Thi Thanh Huyen, Saikat Sinha Ray, Young -Nam Kwon

Summary: This study focuses on the modification of a commercially available polyamide thin-film composite membrane with a zwitterionic material to enhance its fouling resistance. The modified membrane shows improved salt rejection and reduced permeability compared to the pristine membrane. Fouling tests demonstrate that the modified membrane has a lower fouling ratio and higher recovery ratio. The enhanced antifouling characteristics are attributed to the improved hydrophilicity resulting from the zwitterionic brushes and the salting-in effect.

DESALINATION (2024)

Article Engineering, Chemical

Towards pilot scale flow-electrode capacitive deionization

Niklas Koeller, Lukas Mankertz, Selina Finger, Christian J. Linnartz, Matthias Wessling

Summary: This study presents a methodology to scale up Flow-electrode Capacitive Deionization (FCDI) technology from lab-scale to pilot-scale systems. By increasing membrane area and using a stacking approach, the FCDI modules were successfully scaled up and achieved a salt transfer rate comparable to lab-scale systems. This provides a foundation for future assessments of energy demand and economics.

DESALINATION (2024)

Article Engineering, Chemical

Efficient lithium recovery from simulated brine using a hybrid system: Direct contact membrane distillation (DCMD) and electrically switched ion exchange (ESIX)

Mona Gulied, Sifani Zavahir, Tasneem Elmakki, Hyunwoong Park, Guillermo Hijos Gago, Ho Kyong Shon, Dong Suk Han

Summary: This study introduces a novel hybrid system that combines direct contact membrane distillation (DCMD) and electrically switched ion exchange (ESIX) to facilitate seawater reverse osmosis (SWRO) brine enrichment and selective lithium recovery.

DESALINATION (2024)

Article Engineering, Chemical

Enhanced ammonia recovery from strong ammonia wastewater via a transmembrane electro-chemisorption system with authigenic acid and base

Zhiqiang Zhang, Ruifeng Deng, Jiao Zhang, Lu She, Guangfeng Wei, Renyong Jia, Pengyu Xiang, Siqing Xia

Summary: A transmembrane electro-chemisorption system with authigenic acid and base was developed for enhancing ammonia recovery from strong ammonia wastewater. The system efficiently transformed ammonium into free ammonia, which was then adsorbed and recovered through transmembrane chemisorption. This system yielded pure (NH4)2SO4 product and produced valuable byproducts of pure hydrogen and oxygen. Higher applied voltage resulted in better ammonia recovery.

DESALINATION (2024)

Article Engineering, Chemical

Development of high-integrity reverse osmosis membranes for enhanced removal of microorganisms

Alena Popova, Sandrine Boivin, Takuji Shintani, Takahiro Fujioka

Summary: This study aimed to produce a high-integrity RO membrane by forming a polyamide skin layer on a TE support layer, in order to enhance the integrity of the membrane and improve the microbiological safety of potable water reuse.

DESALINATION (2024)

Article Engineering, Chemical

Reducing the specific energy use of seawater desalination with thermally enhanced reverse osmosis

Sanjana Yagnambhatt, Saber Khanmohammadi, Jonathan Maisonneuve

Summary: This study investigates the concept of using heat to enhance reverse osmosis (RO) desalination. The effect of temperature on water permeate flux, specific energy, permeate quality, and applied operating pressures is evaluated using an analytical model. The results suggest that under specific conditions, the tradeoff between savings in mechanical pump work and thermal energy input in thermally-enhanced RO can be favorable, leading to overall energy savings.

DESALINATION (2024)

Article Engineering, Chemical

Selective membrane capacitive deionization for superior lithium recovery

Jiangju Si, Chenrui Xue, Shun Li, Linchao Yang, Weiwei Li, Jie Yang, Jihong Lan, Ningbo Sun

Summary: To meet the huge demand for lithium resources, there is an urgent need to develop a new efficient technology for lithium recovery from salt-lake brines. In this study, a selective membrane capacitive deionization system is reported, which achieves high lithium recovery capacity and rate through the use of materials with efficient intercalated pseudo-capacitance and a high specific area porous carbon. The use of a modified thin-coated membrane allows for selective Li+ recovery, and adjusting the concentrations of Li+ and Mg2+ in the feed solution enables higher Li+/Mg2+ selectivity.

DESALINATION (2024)

Article Engineering, Chemical

Augmentation of solar still distillation performance using waste heat energy and guiding vanes: A field study

Mohamed R. Salem, R. Y. Sakr, Ghazy M. R. Assassa, Omar A. Aly

Summary: This research proposes a new method of using wasted thermal energies as an additional heating source for solar still distillation units (SSDUs) to increase productivity and reduce pollution and global warming. By testing two SSDUs, the study shows that heating airflow can raise temperatures, enhance freshwater production, and improve system thermal efficiency.

DESALINATION (2024)

Article Engineering, Chemical

Novel fabric-based 3D photothermal evaporator with advanced light-harvesting and thermal management design

Qimeng Sun, Miao Sun, Linyan Yang, Yuan Gao, Xinghai Zhou, Lihua Lyu, Chunyan Wei

Summary: This study presents an innovative design and fabrication of a fabric-based conical roll (FCR) evaporator, which enables low-temperature evaporation and achieves high evaporation efficiency with excellent thermal management ability. The evaporator has demonstrated advanced light-harvesting capability and can produce freshwater that meets drinking water standards, showing great potential for applications in desalination and sewage treatment.

DESALINATION (2024)

Article Engineering, Chemical

A dual-functional lignin containing pulp foam for solar evaporation and contaminant adsorption

Yidong Zhang, Wangfang Deng, Meiyan Wu, Chao Liu, Guang Yu, Qiu Cui, Pedram Fatehi, Chunlin Xu, Bin Li

Summary: In this study, a novel polydopamine-functionalized lignin-containing pulp foam evaporator with high-efficiency desalination and multi-contaminant adsorption capabilities was designed. The foam evaporator showed excellent light absorption, water absorption, thermal conductivity, and chelation abilities, allowing for solar evaporation and contaminant adsorption synergistically. It also exhibited potential applications in metal ion concentration and contaminated seawater treatments, and demonstrated superior biodegradability compared to poly-styrene foam. This foam material holds promise for developing multifunctional photo-thermal systems for solar-driven water purification.

DESALINATION (2024)