4.7 Article Proceedings Paper

Adsorption kinetics of naphthalene onto organo-sepiolite from aqueous solutions

期刊

DESALINATION
卷 220, 期 1-3, 页码 96-107

出版社

ELSEVIER
DOI: 10.1016/j.desal.2007.01.025

关键词

naphthalene; adsorption; clay; organo-sepiolite; kinetics; environmental pollution

向作者/读者索取更多资源

In this study, the adsorption kinetics of naphthalene onto organically modified-sepiolite was investigated by means of the effects of pH, contact time, adsorbent dosage and temperature. The modification of natural sepiolite was accomplished with a cationic surfactant, which is namely dodecyltrimethyl ammonium (DTMA) bromide. The surface characterization both natural- and modified-sepiolite were carried out by using FTIR method to observe the intercalation of DTMA between the sepiolite layers. The elemental and thermal analyses were also performed to understand the modification. The optimum pH values and the equilibrium contact time for the adsorption of naphthalene onto DTMA-sepiolite were found as 6 and 75 min, respectively. The kinetic parameters of the adsorption process were calculated from experimental data. According to these parameters, adsorption process follows the pseudo-second-order kinetic model with the high correlation coefficients (r(2) = 0.999). The obtained results show that modified-sepiolite is reasonably effective adsorbent for the removal of organic contaminants, which are an important source for the environmental pollutants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Environmental Sciences

Characterization and lead(II) ions removal of modified Punica granatum L. peels

Cigdem Ay, Asiye Safa Ozcan, Yunus Erdogan, Adnan Ozcan

INTERNATIONAL JOURNAL OF PHYTOREMEDIATION (2017)

Article Chemistry, Physical

Evaluation on dye removal capability of didodecyldimethylammonium-bentonite from aqueous solutions

Elif Mine Oncu-Kaya, Nilgun Side, Ozer Gok, Asiye Safa Ozcan, Adnan Ozcan

JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY (2017)

Article Materials Science, Ceramics

Effects of different parameters on the synthesis of silica aerogel microspheres in supercritical CO2 and their potential use as an adsorbent

Ersin Basaran, Tugba Alp Arici, Adnan Ozcan, Ozer Gok, A. Safa Ozcan

JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY (2019)

Article Chemistry, Inorganic & Nuclear

Assessment of adsorption properties of inorganic-organic hybrid cyclomatrix type polyphosphazene microspheres for the removal of Pb(II) ions from aqueous solutions

Tugba Alp Arici, Simge Metinoglu Orum, Yasemin Suzen Demircioglu, Adnan Ozcan, A. Safa Ozcan

PHOSPHORUS SULFUR AND SILICON AND THE RELATED ELEMENTS (2018)

Article Chemistry, Physical

Experimental and theoretical investigations of novel synthesized organo-silane compounds and modified mesoporous silica materials

Emel Ermis, Yasemin Suzen Demircioglu, A. Safa Ozcan

JOURNAL OF MOLECULAR STRUCTURE (2019)

Article Engineering, Environmental

Biosorption Characteristics of Cu(II) and Cd(II) Ions by Modified Alginate

Tugba Alp Arici, A. Safa Ozcan, Adnan Ozcan

JOURNAL OF POLYMERS AND THE ENVIRONMENT (2020)

Article Chemistry, Multidisciplinary

Biosorption performance of thiosalicylic acid modifiedisatis tinctoriafor Pb(II) and Cd(II) ions: batch and column studies

Tugba Alp Arici, A. Safa Ozcan, Adnan Ozcan

Summary: The biosorption of Pb(II) and Cd(II) ions onto thiosalicylic acid modified Isatis tinctoria (TS-I) was effective, with TS-I showing high biosorption capacity for metal ions. The study revealed that the biosorption equilibrium and kinetic data were well matched with Langmuir isotherm and pseudo-second-order kinetic models, respectively.

SEPARATION SCIENCE AND TECHNOLOGY (2021)

Article Chemistry, Analytical

Determination of Cadmium(II) by Differential Pulse Voltammetry (DPV) Using a Cerium(IV) Oxide: Polyaniline Composite Modified Glassy Carbon Electrode (GCE)

Melis Altundal, Ahmet Uge, Ozer Gok, Bulent Zeybek

Summary: A novel electrochemical sensing platform based on differential pulse voltammetry was developed for selective determination of Cd(II) using a CeO2-PANI composite modified electrode. The electrode exhibited a large linear range and a low detection limit for Cd(II), showing good electrocatalytic activity. The platform was successfully applied for reliable determination of spiked Cd(II) in various samples.

ANALYTICAL LETTERS (2021)

Article Chemistry, Applied

Partial photoelectrocatalytic oxidation of 3-pyridinemethanol by Pt, Au and Pd loaded TiO2 nanotubes on Ti plate

Sedat Yurdakal, Sidika Cetinkaya, Levent Ozcan, Ozer Gok, Leonardo Palmisano

Summary: The study investigated the photoelectrocatalytic oxidation of 3-pyridinemethanol using TiO2 anode plates loaded with different noble metals under UVA irradiation, with Pd showing high activity and selectivity when loaded in low amounts. The experiments suggest that PEC is more selective than PC for vitamin B-3 production.

CATALYSIS TODAY (2021)

Article Chemistry, Multidisciplinary

Drug removal and release studies of mesoporous and modified silica

Selin Karadag Memis, Emel Ermis, Asiye Safa Ozcan

Summary: This study focused on the synthesis, characterization and modification of mesoporous silica (MS), as well as drug removal and release studies. The synthesized MS exhibited an ordered structure with high surface area and homogenous pore size distribution, while the modification with a Schiff base (S) ligand was also carried out. Various analyses including SEM, nitrogen gas adsorption, FT-IR spectroscopy, XRD and DLS were performed for the characterization of MS and Schiff base modified MS (S-MS). The adsorption of model drugs onto MS and S-MS under different conditions was investigated, and the drug release efficiency of hybrid structures was evaluated.

SEPARATION SCIENCE AND TECHNOLOGY (2023)

Article Engineering, Chemical

Comparative analysis of integrating standalone renewable energy sources with brackish water reverse osmosis plants: Technical and economic perspectives

Arvin Sohrabi, Mousa Meratizaman, Shuli Liu

Summary: This paper simulates and discusses possible solutions to improve the economic and technical performances of a battery-less renewable energy-powered BWRO system under real climate conditions. The study finds that the photovoltaic-based system performs better in terms of specific energy consumption and unused energy ratio.

DESALINATION (2024)

Article Engineering, Chemical

An innovative process design of seawater desalination toward hydrogen liquefaction applied to a ship's engine: An economic analysis and intelligent data-driven learning study/optimization

Chunlan Pan, Xiaoyin Hu, Vishal Goyal, Theyab R. Alsenani, Salem Alkhalaf, Tamim Alkhalifah, Fahad Alturise, Hamad Almujibah, H. Elhosiny Ali

Summary: This paper introduces a novel waste heat recovery method using the hot flue gas from a ship's engine to produce liquefied hydrogen while meeting the ship's air-conditioning requirement. A comprehensive feasibility assessment is conducted and an artificial neural network with a multiobjective grey wolf optimization method is used for optimization. The findings indicate the highest mean sensitivity index of the flash temperature and the best optimization scenario for exergy efficiency, CO2 emission reduction, and liquefied hydrogen cost.

DESALINATION (2024)

Article Engineering, Chemical

Selective separation of nitrate from chloride using PVDF-based anion-exchange membranes

Daniele Chinello, Jan Post, Louis C. P. M. de Smet

Summary: In this study, PVDF-based anion-exchange membranes were designed to selectively separate nitrate from chloride. Experimental data showed that increasing the concentration of PVDF enhanced nitrate transport but also increased the membrane electrical resistance. The selectivity of nitrate was found to be independent of the membrane thickness and mainly driven by the increased affinity between the anion and the membrane.

DESALINATION (2024)

Article Engineering, Chemical

Functionalized carbon 1D/2D nanomaterials for effective water desalination: Synthesis, applications and cost issues. An overview

Umar Noor, Muhammad Fayyaz Farid, Ammara Sharif, Amna Saleem, Zubair Nabi, Muhammad Furqan Mughal, Kiran Abbas, Toheed Ahmed

Summary: Global water scarcity is increasing, and water desalination is an important solution. Multifunctional advanced materials, such as membrane materials and solar-driven desalination, play a crucial role in water desalination. Additionally, these materials can be used for water purification, wastewater treatment, and pollutant elimination.

DESALINATION (2024)

Article Engineering, Chemical

sCO2 power cycle/reverse osmosis distillation system for water-electricity cogeneration in nuclear powered ships and submarines

Emrah Gumus

Summary: With growing global concerns about climate change and environmental impacts, the use of nuclear energy in naval vessels offers a cleaner and more efficient solution to reduce emissions and address water and energy supply challenges. This study explores a novel system that combines a nuclear-driven supercritical carbon dioxide power cycle with reverse osmosis cogeneration to meet the water and electricity demands in maritime operations, enhancing the sustainability, efficiency, and self-sufficiency of naval vessels. The results indicate that the system has the potential to be a viable and effective solution for naval operations.

DESALINATION (2024)

Article Engineering, Chemical

Zwitterionic material for construction of an antifouling polyamide thin film composite membrane

Dao Thi Thanh Huyen, Saikat Sinha Ray, Young -Nam Kwon

Summary: This study focuses on the modification of a commercially available polyamide thin-film composite membrane with a zwitterionic material to enhance its fouling resistance. The modified membrane shows improved salt rejection and reduced permeability compared to the pristine membrane. Fouling tests demonstrate that the modified membrane has a lower fouling ratio and higher recovery ratio. The enhanced antifouling characteristics are attributed to the improved hydrophilicity resulting from the zwitterionic brushes and the salting-in effect.

DESALINATION (2024)

Article Engineering, Chemical

Towards pilot scale flow-electrode capacitive deionization

Niklas Koeller, Lukas Mankertz, Selina Finger, Christian J. Linnartz, Matthias Wessling

Summary: This study presents a methodology to scale up Flow-electrode Capacitive Deionization (FCDI) technology from lab-scale to pilot-scale systems. By increasing membrane area and using a stacking approach, the FCDI modules were successfully scaled up and achieved a salt transfer rate comparable to lab-scale systems. This provides a foundation for future assessments of energy demand and economics.

DESALINATION (2024)

Article Engineering, Chemical

Efficient lithium recovery from simulated brine using a hybrid system: Direct contact membrane distillation (DCMD) and electrically switched ion exchange (ESIX)

Mona Gulied, Sifani Zavahir, Tasneem Elmakki, Hyunwoong Park, Guillermo Hijos Gago, Ho Kyong Shon, Dong Suk Han

Summary: This study introduces a novel hybrid system that combines direct contact membrane distillation (DCMD) and electrically switched ion exchange (ESIX) to facilitate seawater reverse osmosis (SWRO) brine enrichment and selective lithium recovery.

DESALINATION (2024)

Article Engineering, Chemical

Enhanced ammonia recovery from strong ammonia wastewater via a transmembrane electro-chemisorption system with authigenic acid and base

Zhiqiang Zhang, Ruifeng Deng, Jiao Zhang, Lu She, Guangfeng Wei, Renyong Jia, Pengyu Xiang, Siqing Xia

Summary: A transmembrane electro-chemisorption system with authigenic acid and base was developed for enhancing ammonia recovery from strong ammonia wastewater. The system efficiently transformed ammonium into free ammonia, which was then adsorbed and recovered through transmembrane chemisorption. This system yielded pure (NH4)2SO4 product and produced valuable byproducts of pure hydrogen and oxygen. Higher applied voltage resulted in better ammonia recovery.

DESALINATION (2024)

Article Engineering, Chemical

Development of high-integrity reverse osmosis membranes for enhanced removal of microorganisms

Alena Popova, Sandrine Boivin, Takuji Shintani, Takahiro Fujioka

Summary: This study aimed to produce a high-integrity RO membrane by forming a polyamide skin layer on a TE support layer, in order to enhance the integrity of the membrane and improve the microbiological safety of potable water reuse.

DESALINATION (2024)

Article Engineering, Chemical

Reducing the specific energy use of seawater desalination with thermally enhanced reverse osmosis

Sanjana Yagnambhatt, Saber Khanmohammadi, Jonathan Maisonneuve

Summary: This study investigates the concept of using heat to enhance reverse osmosis (RO) desalination. The effect of temperature on water permeate flux, specific energy, permeate quality, and applied operating pressures is evaluated using an analytical model. The results suggest that under specific conditions, the tradeoff between savings in mechanical pump work and thermal energy input in thermally-enhanced RO can be favorable, leading to overall energy savings.

DESALINATION (2024)

Article Engineering, Chemical

Selective membrane capacitive deionization for superior lithium recovery

Jiangju Si, Chenrui Xue, Shun Li, Linchao Yang, Weiwei Li, Jie Yang, Jihong Lan, Ningbo Sun

Summary: To meet the huge demand for lithium resources, there is an urgent need to develop a new efficient technology for lithium recovery from salt-lake brines. In this study, a selective membrane capacitive deionization system is reported, which achieves high lithium recovery capacity and rate through the use of materials with efficient intercalated pseudo-capacitance and a high specific area porous carbon. The use of a modified thin-coated membrane allows for selective Li+ recovery, and adjusting the concentrations of Li+ and Mg2+ in the feed solution enables higher Li+/Mg2+ selectivity.

DESALINATION (2024)

Article Engineering, Chemical

Augmentation of solar still distillation performance using waste heat energy and guiding vanes: A field study

Mohamed R. Salem, R. Y. Sakr, Ghazy M. R. Assassa, Omar A. Aly

Summary: This research proposes a new method of using wasted thermal energies as an additional heating source for solar still distillation units (SSDUs) to increase productivity and reduce pollution and global warming. By testing two SSDUs, the study shows that heating airflow can raise temperatures, enhance freshwater production, and improve system thermal efficiency.

DESALINATION (2024)

Article Engineering, Chemical

Novel fabric-based 3D photothermal evaporator with advanced light-harvesting and thermal management design

Qimeng Sun, Miao Sun, Linyan Yang, Yuan Gao, Xinghai Zhou, Lihua Lyu, Chunyan Wei

Summary: This study presents an innovative design and fabrication of a fabric-based conical roll (FCR) evaporator, which enables low-temperature evaporation and achieves high evaporation efficiency with excellent thermal management ability. The evaporator has demonstrated advanced light-harvesting capability and can produce freshwater that meets drinking water standards, showing great potential for applications in desalination and sewage treatment.

DESALINATION (2024)

Article Engineering, Chemical

A dual-functional lignin containing pulp foam for solar evaporation and contaminant adsorption

Yidong Zhang, Wangfang Deng, Meiyan Wu, Chao Liu, Guang Yu, Qiu Cui, Pedram Fatehi, Chunlin Xu, Bin Li

Summary: In this study, a novel polydopamine-functionalized lignin-containing pulp foam evaporator with high-efficiency desalination and multi-contaminant adsorption capabilities was designed. The foam evaporator showed excellent light absorption, water absorption, thermal conductivity, and chelation abilities, allowing for solar evaporation and contaminant adsorption synergistically. It also exhibited potential applications in metal ion concentration and contaminated seawater treatments, and demonstrated superior biodegradability compared to poly-styrene foam. This foam material holds promise for developing multifunctional photo-thermal systems for solar-driven water purification.

DESALINATION (2024)