4.6 Article

Ultra-fast light-curing resin composite with increased conversion and reduced monomer elution

期刊

DENTAL MATERIALS
卷 30, 期 5, 页码 594-604

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.dental.2014.02.023

关键词

Conversion; Kinetics; Elution; Irradiation protocols; Polymerization efficiency

向作者/读者索取更多资源

Objectives. To test the null hypotheses that photoactive resin composites containing a Type I photoinitiator would exhibit reduced DC or increased monomer elution at substantially short curing times compared with materials based on a Type 2 ketone/amine system. Methods. Two experimental resin composites were prepared, using either Lucirin-TPO or camphorquinone/DMAEMA. Specimens were light-cured using appropriate spectral emission that coincided with the absorption properties of each initiator using different irradiation protocols (0.5, 1, 3, 9 s at 500, 1000 and 2000 mW/cm(2) for Lucirin-TPO based composites and 20 or 40 s at 1000 mW/cm(2) for Lucirin-TPO and camphorquinone-based composites). Degree of conversion (DC) was measured by Raman spectroscopy, propagating radical concentrations were collected by means of electron paramagnetic resonance (EPR) and monomer leaching was characterized using high-performance liquid chromatography (HPLC). Results. The null hypotheses were rejected, except for a single irradiation protocol (0.5 s @ 500 mW/cm(2)). Lucirin-TPO-based composites could cure 20 times faster and release at least 4 times less monomers in comparison to camphorquinone-based composites. At 1000 mW/cm(2), and 1 s irradiation time for curing times of 1 s, Lucirin-TPO based composites displayed 10% higher DC. The difference in polymerization efficiency of Lucirin-TPO compared with camphorquinone-based resin composites were explained using EPR; the former showing a significantly greater yield of radicals which varied logarithmically with radiant exposure. Significance. Lucirin-TPO is substantially more efficient at absorbing and converting photon energy when using a curing-light with an appropriate spectral emission and otherwise a limitation noted in several previous publications. At concentrations of 0.0134 mol/L, Lucirin-TPO-based composites require a minimum light intensity of 1000 mW/cm(2) and an exposure time of 1 s to provide significantly improved DC and minimal elution compared with a conventional photoinitiator system. The use of a wide range of curing protocols in the current experiment has realized the significant potential of Lucirin-TPO and its impact for clinical applications, in replacement to materials using camphorquinone. (C) 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据