4.6 Article

Preparation and evaluation of a novel glass-ionomer cement with antibacterial functions

期刊

DENTAL MATERIALS
卷 27, 期 5, 页码 487-496

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.dental.2011.02.006

关键词

PQAS; Substitute chain length; Antibacterial; S. mutans viability; Glass-ionomer cement; CS; Aging

资金

  1. NIH [(RC1) DE020614-01]

向作者/读者索取更多资源

Objective. The objective of this study was to use the newly synthesized poly(quaternary ammonium salt) (PQAS)-containing polyacid to formulate the light-curable glass-ionomer cements and study the effect of the PQAS on the compressive strength and antibacterial activity of the formed cements. Materials and methods. The functional QAS and their constructed PQAS were synthesized, characterized and formulated into the experimental high-strength cements. Compressive strength (CS) and Streptococcus mutans viability were used to evaluate the mechanical strength and antibacterial activity of the cements. Fuji II LC cementwas used as control. The specimens were conditioned in distilled water at 37 degrees C for 24h prior to testing. The effects of the substitute chain length, loading as well as grafting ratio of the QAS and aging on CS and S. mutans viability were investigated. Results. All the PQAS-containing cements showed a significant antibacterial activity, accompanying with an initial CS reduction. The effects of the chain length, loading and grafting ratio of the QAS were significant. Increasing chain length, loading, grafting ratio significantly enhanced antibacterial activity but reduced the initial CS. Under the same substitute chain length, the cements containing QAS bromide were found to be more antibacterial than those containing QAS chloride although the CS values of the cements were not statistically different from each other, suggesting that we can use QAS bromide directly without converting bromide to chloride. The experimental cement showed less CS reduction and higher antibacterial activity than Fuji II LC. The long-term aging study suggests that the cements may have a long-lasting antibacterial function. Conclusions. This study developed a novel antibacterial glass-ionomer cement. Within the limitations of this study, it appears that the experimental cement is a clinically attractive dental restorative due to its high mechanical strength and antibacterial function. Published by Elsevier Ltd on behalf of Academy of Dental Materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据