4.7 Article

Prefrontal Hypometabolism in Alzheimer Disease Is Related to Longitudinal Amyloid Accumulation in Remote Brain Regions

期刊

JOURNAL OF NUCLEAR MEDICINE
卷 56, 期 3, 页码 399-404

出版社

SOC NUCLEAR MEDICINE INC
DOI: 10.2967/jnumed.114.149302

关键词

Alzheimer disease; PET; F-18-FDG; C-11-PiB; rs-fMRI

资金

  1. German Research Foundation (DFG) [DR 445/4-1, DR 445/5-2, FO 886/1-1]

向作者/读者索取更多资源

In PET studies of patients with Alzheimer disease (AD), prominent hypometabolism can occur in brain regions without major amyloid load. These hypometabolism-only (HO) areas may not be explained easily as a consequence of local amyloid toxicity. The aim of this longitudinal multimodal imaging study was the investigation of locoregional and remote relationships between metabolism in HO areas and longitudinal amyloid increase in functionally connected brain areas, with a particular focus on intrinsic functional connectivity as a relevant linking mechanism between pathology and dysfunction. Methods: Fifteen AD patients underwent longitudinal examinations with C-11-Pittsburgh compound B (C-11-PiB) and F-18-FDG PET (mean follow-up period, 2 y). The peak HO region was identified by the subtraction of equally thresholded statistical T maps (hypometabolism minus amyloid burden), resulting from voxel-based statistical parametric mapping group comparisons between the AD patients and 15 healthy controls. Then functionally connected and nonconnected brain networks were identified by means of seed-based intrinsic functional connectivity analysis of the resting-state functional MRI data of healthy controls. Finally, network-based, region-of-interest-based, and voxel-based correlations were calculated between longitudinal changes of normalized C-11-PiB binding and F-18-FDG metabolism. Results: Positive voxel-based and region-of-interest-based correlations were demonstrated between longitudinal C-11-PiB increases in the HO-connected network, encompassing bilateral temporoparietal and frontal brain regions, and metabolic changes in the peak HO region as well as locoregionally within several AD-typical brain regions. Conclusion: Our results indicate that in AD amyloid accumulation in remote but functionally connected brain regions may significantly contribute to longitudinally evolving hypometabolism in brain regions not strongly affected by local amyloid pathology, supporting the amyloid-and network-degeneration hypothesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据