4.5 Article

Human embryonic stem cell-derived neural precursor transplants in collagen scaffolds promote recovery in injured rat spinal cord

期刊

CYTOTHERAPY
卷 11, 期 5, 页码 618-630

出版社

ELSEVIER SCI LTD
DOI: 10.1080/14653240903005802

关键词

collagen scaffold; human embryonic stem cells; neural progenitor cells; spinal cord injury

资金

  1. SBDC of Royan Institute
  2. Industrial Development and Renovation Organization of I. R. Iran

向作者/读者索取更多资源

Background aims Several studies have reported functional improvement after transplantation of in vivo-derived neural progenitor cells (NPC) into injured spinal cord. However, the potential of human embryonic stem cell-derived NPC (hESC-NPC) as a tool for cell replacement of spinal cord injury (SCI) should be considered. Methods We report on the generation of NPC as neural-like tubes in adherent and feeder-free hESC using a defined media supplemented with growth factors, and their transplantation in collagen scaffolds in adult rats subjected to midline lateral hemisection SCI. Results hESC-NPC were highly expressed molecular features of NPC such as Nestin, Sox1 and Pax6. Furthermore, these cells exhibited the multipotential characteristic of differentiating into neurons and glials in vitro. Implantation of xenografted hESC-NPC into the spinal cord with collagen scaffold improved the recovery of hindlimb locomotor function and sensory responses in an adult rat model of SCI. Analysis of transplanted cells showed migration toward the spinal cord and both neural and glial differentiation in vivo. Conclusions These findings show that transplantation of hESC-NPC in collagen scaffolds into an injured spinal cord may provide a new approach to SCI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据