4.2 Article

Analysis of Clinical Flow Cytometric Immunophenotyping Data by Clustering on Statistical Manifolds: Treating Flow Cytometry Data as High-Dimensional Objects

期刊

CYTOMETRY PART B-CLINICAL CYTOMETRY
卷 76B, 期 1, 页码 1-7

出版社

WILEY-LISS
DOI: 10.1002/cyto.b.20435

关键词

flow cytometry; statistical manifold; information geometry; immunophenotyping; immunophenotype clustering

资金

  1. National Science Foundation [CCR-0325571]

向作者/读者索取更多资源

Background: Clinical flow cytometry typically involves the sequential interpretation of two-dimensional histograms, usually culled from six or more cellular characteristics, following initial selection (gating) of cell populations based on a different subset of these characteristics. We examined the feasibility of instead treating gated n-parameter clinical flow cytometry data as objects embedded in n-dimensional space using principles of information geometry via a recently described method known as Fisher Information Non-parametric Embedding (FINE). Methods: After initial selection of relevant cell populations through an iterative gating strategy, we converted four color (six-parameter) clinical flow cytometry datasets into six-dimensional probability density functions, and calculated differences among these distributions using the Kullback-Leibler divergence (a measurement of relative distributional entropy shown to be an appropriate approximation of Fisher information distance in certain types of statistical manifolds). Neighborhood maps based on Kullback-Leibler divergences were projected onto two dimensional displays for comparison. Results: These methods resulted in the effective unsupervised clustering of cases of acute lymphoblastic leukemia from cases of expansion of physiologic B-cell precursors (hematogones) within a set of 54 patient samples. Conclusions: The treatment of flow cytometry datasets as objects embedded in high-dimensional space (as opposed to sequential two-dimensional analyses) harbors the potential for use as a decision-support tool in clinical practice or as a means for context-based archiving and searching of clinical flow cytometry data based on high-dimensional distribution patterns contained within stored list mode data. Additional studies will be needed to further test the effectiveness of this approach in clinical practice. (C) 2008 Clinical Cytometry Society

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据