4.3 Article

Automated detection of circulating tumor cells with naive Bayesian classifiers

期刊

CYTOMETRY PART A
卷 85A, 期 6, 页码 501-511

出版社

WILEY
DOI: 10.1002/cyto.a.22471

关键词

biomedical image processing; cancer detection; support vector machines; Gaussian mixture model

资金

  1. Frankfurt Institute for Advanced Studies (FIAS)
  2. German Research Foundation (DFG) [LU 1196/4-2]

向作者/读者索取更多资源

Personalized medicine is a modern healthcare approach where information on each person's unique clinical constitution is exploited to realize early disease intervention based on more informed medical decisions. The application of diagnostic tools in combination with measurement evaluation that can be performed in a reliable and automated fashion plays a key role in this context. As the progression of various cancer diseases and the effectiveness of their treatments are related to a varying number of tumor cells that circulate in blood, the determination of their extremely low numbers by liquid biopsy is a decisive prognostic marker. To detect and enumerate circulating tumor cells (CTCs) in a reliable and automated fashion, we apply methods from machine learning using a naive Bayesian classifier (NBC) based on a probabilistic generative mixture model. Cells are collected with a functionalized medical wire and are stained for fluorescence microscopy so that their color signature can be used for classification through the construction of Red-Green-Blue (RGB) color histograms. Exploiting the information on the fluorescence signature of CTCs by the NBC does not only allow going beyond previous approaches but also provides a method of unsupervised learning that is required for unlabeled training data. A quantitative comparison with a state-of-the-art support vector machine, which requires labeled data, demonstrates the competitiveness of the NBC method. (c) 2014 International Society for Advancement of Cytometry

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据