4.5 Article

Free Energy Calculations to Estimate Ligand-Binding Affinities in Structure-Based Drug Design

期刊

CURRENT PHARMACEUTICAL DESIGN
卷 20, 期 20, 页码 3323-3337

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/13816128113199990604

关键词

Free energy perturbation; free energy calculations; FBPase; QM/MM FEP; ligand-binding affinity; structure-based drug design

向作者/读者索取更多资源

Post-genomic era has led to the discovery of several new targets posing challenges for structure-based drug design efforts to identify lead compounds. Multiple computational methodologies exist to predict the high ranking hit/lead compounds. Among them, free energy methods provide the most accurate estimate of predicted binding affinity. Pathway-based Free Energy Perturbation (FEP), Thermodynamic Integration (TI) and Slow Growth (SG) as well as less rigorous end-point methods such as Linear interaction energy (LIE), Molecular Mechanics-Poisson Boltzmann./Generalized Born Surface Area (MM-PBSA/GBSA) and lambda-dynamics have been applied to a variety of biologically relevant problems. The recent advances in free energy methods and their applications including the prediction of protein-ligand binding affinity for some of the important drug targets have been elaborated. Results using a recently developed Quantum Mechanics (QM)/Molecular Mechanics (MM) based Free Energy Perturbation (FEP) method, which has the potential to provide a very accurate estimation of binding affinities to date has been discussed. A case study for the optimization of inhibitors for the fructose 1,6-bisphosphatase inhibitors has been described.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据