4.2 Review

Pathobiology of focal segmental glomerulosclerosis: new developments

期刊

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/MNH.0b013e32835200df

关键词

APOL1; focal segmental glomerulosclerosis; parietal cell; pathogenesis; permeability factor; podocyte

向作者/读者索取更多资源

Purpose of review Focal segmental glomerulosclerosis (FSGS) is a major cause of nephrotic syndrome and renal failure. All forms of FSGS share podocyte injury and depletion as central mediators. This review focuses on new insights into pathogenesis from study of extrinsic toxins in experimental models, permeability factors in human disease, and novel genetic causes. Recent findings Experimental toxin models have advanced our understanding of the threshold and dynamics of podocyte injury. Following initial podocyte depletion, spreading fields of podocyte injury through secondary mediators appear to be important in generating the segmental pathologic lesions. Proliferating glomerular epithelial cells are common in FSGS, although there are conflicting views about their identity. Evidence suggests potential contributions by mature parietal epithelial cells, facultative stem cells and podocytes. A number of novel candidate permeability factors that affect podocyte function and motility have been discovered in human FSGS and related podocytopathy minimal change disease. Exome capture has identified new monogenic causes of familial FSGS. Apolipoprotein L-1 (APOL1) is expressed in podocytes, and the prevalence of APOL1 risk alleles in patients of African descent with primary FSGS and HIV-associated nephropathy is high, implicating potential podocyte effects. Summary FSGS is caused by a complex interplay of inherent genetic susceptibilities and external injurious factors acting on podocytes. Critical levels of podocyte stress eventuate in podocyte depletion, segmental glomerular scarring, and glomerular epithelial cell hyperplasia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据