4.4 Review

The antioxidant response element and oxidative stress modifiers in airway diseases

期刊

CURRENT MOLECULAR MEDICINE
卷 8, 期 5, 页码 376-383

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/156652408785160925

关键词

lung; inflammation; redox imbalance; antioxidant enzymes; Nrf2; AP1

资金

  1. NIH [P50 HL073994, HL66109, ES11863]

向作者/读者索取更多资源

Redox balance is particularly important in the airways because they are the first points of contact with environmental pollutants such as ozone, particles, and cigarette smoke, as well as pathogens such as bacteria and viruses. However, an imbalance between toxicant-induced reactive oxygen (ROS) and nitrogen (RNS) species and the antioxidant defense system leads to oxidative stress, which has been implicated in the development and/or perpetuation of airway diseases, including malignancy. Various antioxidant enzymes and proteins are critical to maintaining the reducing environment of the cell and preventing the damage to various biomolecules that is elicited by ROS/RNS. Emerging evidence indicates that transcriptional activation of the antioxidant response element (ARE) plays a crucial role in modulating oxidative stress and providing cytoprotection against prooxidant stimuli. This review focuses on the regulation and functional roles of key effectors that bind to the ARE and differentially (up- or down-) regulate gene expression in lung tissue/cell types in response to respiratory toxicants. It also provides a perspective on whether boosting ARE-mediated gene expression with dietary plants and synthetic plant products will offer a better therapeutic strategy for mitigating oxidative stress and respiratory pathogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据