4.6 Review

Entry of oximes into the brain: A review

期刊

CURRENT MEDICINAL CHEMISTRY
卷 15, 期 8, 页码 743-753

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/092986708783955563

关键词

blood-brain barrier; cerebrospinal fluid; organophosphates; oxime; pralidoxime; paraoxon

向作者/读者索取更多资源

The passage of hydrophilic drugs, such as oxime acetylcholinesterase reactivators, into the central nervous system is restricted by the blood-brain and the blood-cerebrospinal fluid barriers. The present review summarizes morphological and functional properties of the blood-brain barrier, blood-cerebrospinal fluid barrier and cerebrospinal fluid-brain interface and reviews the existing data on brain entry of oximes. Due to the virtual absence of transcytosis, lack of fenestrations and unique properties of tight junctions in brain endothelial cells, the blood-brain barrier only allows free diffusion of small lipophilic molecules. Various carriers transport hydrophilic compounds and extrude potentially toxic xenobiotics. The blood-cerebrospinal fluid barrier is formed by the choroid plexus epithelium, whose tight junctions are more permeable than those of brain endothelial cells. The major function of plexus epithelium cells is active transport of ions for the production of the cerebrospinal fluid. The cerebrospinal fluid-brain interface is not a biological barrier and allows free diffusion. However, in contrast to passage via the blood-brain barrier or the blood-cerebrospinal fluid barrier, direct penetration from the cerebrospinal fluid into the brain is very slow, since much longer distances have to be covered. A bulk flow of brain interstitial fluid and cerebrospinal fluid speeds up exchange between these two fluid compartments. Oximes, by reactivating acetylcholinesterase, are important adjunct therapeutics in organophosphate poisoning. They are very hydrophilic and therefore cannot diffuse freely into the central nervous system. Changes in brain acetylcholinesterase activity, oxime concentration and some biological effects elicited by oxime administration in the periphery indicate, however, that oximes can gain access to the brain to a certain degree, probably by carrier-mediated transport, reaching in the brain about 4-10% of their respective plasma levels. The clinical relevance of this effect is hotly debated. Possible strategies to improve brain penetration of oximes are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据