4.8 Article

The Head-Direction Signal Is Critical for Navigation Requiring a Cognitive Map but Not for Learning a Spatial Habit

期刊

CURRENT BIOLOGY
卷 23, 期 16, 页码 1536-1540

出版社

CELL PRESS
DOI: 10.1016/j.cub.2013.06.030

关键词

-

资金

  1. NIH [NS053907, DC009318]

向作者/读者索取更多资源

Head-direction (HD) cells fire as a function of an animal's directional heading in the horizontal plane during two-dimensional navigational tasks [1]. The information from HD cells is used with place and grid cells to form a spatial representation (cognitive map) of the environment [2, 3]. Previous studies have shown that when rats are inverted (upside down), they have difficulty learning a task that requires them to find an escape hole from one of four entry points but that they can learn it when released from one or two start points [4]. Previous reports also indicate that the HD signal is disrupted when a rat is oriented upside down [5, 6]. Here we monitored HD cell activity in the two-entry-point version of the inverted task and when the rats were released from a novel start point. We found that despite the absence of direction-specific firing in HD cells when inverted, rats could successfully navigate to the escape hole when released from one of two familiar locations by using a habit-associated directional strategy. In the continued absence of normal HD cell activity, inverted rats failed to find the escape hole when started from a novel release point. The results suggest that the HD signal is critical for accurate navigation in situations that require a flexible allocentric cognitive mapping strategy, but not for situations that utilize habit-like associative spatial learning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据