4.8 Article

Cortical Actin Dynamics Facilitate Early-Stage Centrosome Separation

期刊

CURRENT BIOLOGY
卷 20, 期 8, 页码 770-776

出版社

CELL PRESS
DOI: 10.1016/j.cub.2010.02.060

关键词

-

资金

  1. National Institutes of Health [GM046409]

向作者/读者索取更多资源

Proper centrosome separation is a prerequisite for positioning the bipolar spindle. Although studies demonstrate that microtubules (MTs) and their associated motors drive centrosome separation [1], the role of actin in centrosome separation remains less clear. Studies in tissue culture cells indicate that actin- and myosin-based cortical flow is primarily responsible for driving late centrosome separation [2], whereas other studies suggest that actin plays a more passive role by serving as an attachment site for astral MTs to pull centrosomes apart [3-6]. Here we demonstrate that prior to nuclear envelope breakdown (NEB) in Drosophila embryos, proper centrosome separation does not require myosin II but requires dynamic actin rearrangements at the growing edge of the interphase cap. Both Arp2/3- and Formin-mediated actin remodeling are required for separating the centrosome pairs before NEB. The Apc2-Armadillo complex appears to link cap expansion to centrosome separation. In contrast, the mechanisms driving centrosome separation after NEB are independent of the actin cytoskeleton and compensate for earlier separation defects. Our studies show that the dynamics of actin polymerization drive centrosome separation, and this has important implications for centrosome positioning during processes such as cell migration [7, 8], cell polarity maintenance [9, 10], and asymmetric cell division [11, 12].

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据