4.4 Article

Photocatalytic performance of TiO2/V2O5 nanocomposite powder prepared by DC arc plasma

期刊

CURRENT APPLIED PHYSICS
卷 14, 期 3, 页码 433-438

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cap.2014.01.004

关键词

TiO2/V2O5 photocatalyst; Thermal plasma; Nanocomposite powder; UV-visible spectroscopy; Toluene decomposition

资金

  1. Regional Innovation Center for Environmental Technology of Thermal Plasma (RIC-ETTP) at Inha University

向作者/读者索取更多资源

TiO2/V2O5 nanocomposite powder was synthesized by the DC arc plasma, and its photocatalytic activity was examined by decompositions of Rhodamine B solution and toluene gas. In the synthesis of TiO2/V2O5 nanocomposite powder, TiCl4 and VOCl3 precursors were introduced into thermal plasma flame with argon carrier gases through separated two gas bubblers. They were decomposed by Ar-N-2 thermal plasma generating Ti and V vapors, followed by the formation of oxides with the injection of additional oxygen into a plasma reactor. Nanocomposite composed of relatively small size V2O5 nanoparticles on a spherical TiO2 nanoparticle which was about 250 nm in diameter was identified by X-ray diffractometry, electronic microscopy, and energy dispersive spectroscopy when the ratio of carrier gas flow rates for TiCl4 to VOCl3 was 1:4 or 1:5. In ultraviolet-visible absorption spectroscopy, the absorbed wavelength of light for synthesized TiO2/V2O5 nanocomposite powder was wider than that for commercially available TiO2 nanopowder. Therefore, Rhodamine B solution exposed to visible light was decomposed by TiO2/V2O5 nanocomposite, whereas it was not decomposed by TiO2 nanopowder. In addition, toluene decomposition in a dielectric barrier discharge reactor was carried out with nano-sized photocatalysts of TiO2 nanopowder and TiO2/V2O5 nanocomposite. Relatively higher removal rate of toluene was found in the case of TiO2/V2O5 nanocomposite in virtue of improved photocatalytic performance. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据