4.2 Article

Anti-α4β1 Integrin Antibodies Attenuated Brain Inflammatory Changes in a Mouse Model of Alzheimer's Disease

期刊

CURRENT ALZHEIMER RESEARCH
卷 15, 期 12, 页码 1123-1135

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1567205015666180801111033

关键词

Alzheimer's disease; APP/PS1; neuroinflammation; tysabri; peripheral immune system; Crohn's disease

向作者/读者索取更多资源

Background: Alzheimer's disease (AD) is associated with age-associated central nervous system degeneration and dementia. This decline in the function correlates with deposition of A beta peptide containing plaques and associated reactive gliosis. The inflammatory phenotype of microglia, in particular, is often considered detrimental to cognitive function in AD. In addition to the changes in the CNS, altered immune changes in the periphery have recently been observed in AD suggesting a critical immune-related communication between the periphery and the brain. Objective: We hypothesized that modulating the peripheral immune system may alter the proinflammatory gliosis associated with AD. Therapeutic antibodies against the a4 beta 1 integrin receptor have been used clinically to attenuate the ability of various immune cells to adhere to endothelium and migrate into target tissues such as the intestines (Crohn's disease) or brain (multiple sclerosis). We hypothesized that a similar peripheral antibody-based therapy would attenuate gliosis by altering immune cell infiltration or phenotype in peripheral organs and the brain using an APP/PS1 mouse model of Alzheimer's disease. Method: Littermate control wild-type and APP/PS1 mice were tail vein injected with either saline, isotype control (IgG2b), or an antibody recognizing alpha 4-integrin, anti-CD49d, once a week for 4 consecutive weeks. To understand CNS and peripheral immune changes, brains and spleen were used. Results/Conclusion: Our data suggests that the antibody therapy was able to reduce microgliosis, astrogliosis, and synaptic changes in the APP/PS1 mice compared to isotype control injections without changing amyloid-beta plaque load. Interestingly, both isotype control and antibody therapy also reduced the number of proinflammatory cytokines in the spleen although changes in the brain were less robust. The anti-CD49d and isotype control treatments also reduced CD4 immunoreactivity in the brains, suggesting a possible mechanism for attenuation of inflammation in the brain. This data suggests that it is indeed feasible to alter the immune component of AD brain changes using a clinically feasible strategy of delivering a particular subtype of IgG or epitope selective antibodies that target infiltration of the peripheral immune system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据