4.7 Article

Electrocatalytic performance of different cobalt molybdate structures for water oxidation in alkaline media

期刊

CRYSTENGCOMM
卷 20, 期 37, 页码 5592-5601

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ce01073k

关键词

-

资金

  1. CNPq
  2. FINEP
  3. FAPEMIG-Brazil

向作者/读者索取更多资源

Cobalt molybdates with different crystalline structures, i.e., alpha, beta, and hydrated (H)-CoMoO4, were synthesized, and their electrocatalytic activities were thoroughly examined for catalyzing the oxygen evolution reaction (OER) in alkaline media. The material characteristics were associated with the electrocatalytic properties by evaluating the CoMoO4 crystal structures (XRD and Raman), morphologies (TEM), and electrochemical features (electrochemically active surface area, roughness factor, electrochemical impedance, Tafel analysis, and controlled -current electrolysis). These combined findings revealed that the electrocatalytic performance is greatly influenced by the crystalline structures of CoMoO4, following the order alpha-CoMoO4 > H-CoMoO4 > beta-CoMoO4. The H-CoMoO4 catalysts crystallized in the triclinic space group, P (1) over bar with Z = 4. On the other hand, the alpha- and beta-CoMoO, catalysts exhibited a monoclinic structure, C2/m (#12), with Z = 8. In the OER experiments, alpha-CoMoO4 showed an overpotential of 0.43 +/- 0.05 V compared to the 0.51 +/- 0.05 V and 0.56 +/- 0.04 V exhibited by the H-CoMoO4 and beta-CoMoO4 catalysts, respectively, to achieve 10 mA cm(-2). All CoMoO4 structures displayed stability for at least 6 h at a controlled current density of 10 mA cm(-2). Finally, computational simulations indicate that the coexistence of Co and Mo ions in edge-shared octahedral sites of alpha-CoMoO4 may favor the interaction between the 0 atom of the water molecule and the metal adsorption sites due to its surface being electronically less dense than beta- and H-CoMoO4 surfaces, thus resulting in its higher performance for OER.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据