4.7 Article

A rapid combustion route to synthesize high-performance nanocrystalline cathode materials for Li-ion batteries

期刊

CRYSTENGCOMM
卷 16, 期 48, 页码 10969-10976

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ce01882f

关键词

-

资金

  1. National Natural Science Foundation of China [51125009]
  2. Fundamental Research Funds for the Central Universities [DUT13LK17]
  3. Scientific Research Fund of Liaoning Provincial Education Department [L2013030]
  4. Open Project of State Key Laboratory of Rare Earth Resources Utilization [RERU2013013]
  5. Hundred Talents Program of Chinese Academy of Sciences

向作者/读者索取更多资源

Nanocrystalline spinel LiMn2O4 and layered LiCo1-xMnxO2 (x = 0-0.15) cathode materials were synthesized by a rapid combustion route in combination with an annealing treatment using common filter paper as the template and ethanol as the fuel. The structure, morphology and electrochemical properties of the materials were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), galvanostatic charge-discharge test, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The spinel LiMn2O4 annealed at 750 degrees C shows excellent cycling stability (capacity retention is 92% after 200 cycles), high coulombic efficiency (>99%) and good rate capability. The layered LiCoO2 shows high initial capacity (168.9 mAh g(-1)) and good rate capability, but its capacity retention is only 74% after 80 cycles owing to the nanosize effect. After doping a small quantity of Mn (x = 0.05), the cycling performance of the Mn-doped sample was significantly improved compared with that of the pristine LiCoO2 (capacity retention is 87% after 80 cycles).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Review Chemistry, Physical

Smart Materials Prediction: Applying Machine Learning to Lithium Solid-State Electrolyte

Qianyu Hu, Kunfeng Chen, Fei Liu, Mengying Zhao, Feng Liang, Dongfeng Xue

Summary: This paper provides an overview of the application and challenges of machine learning in materials prediction. Taking solid-state electrolytes as an example, it outlines the general process of machine learning in materials prediction and reviews recent approaches and specific applications. The paper also highlights the obstacles caused by disciplinary span and aims to raise awareness among materials scholars about the application of machine learning in materials prediction.

MATERIALS (2022)

Review Chemistry, Multidisciplinary

Perspective on Micro-Supercapacitors

Xiangfei Sun, Kunfeng Chen, Feng Liang, Chunyi Zhi, Dongfeng Xue

Summary: This article reviews the material design and manufacturing technology of different micro-supercapacitors (MSCs) in recent years, along with the integration of their devices to achieve target applications. The future development directions and challenges of MSCs are also critically discussed.

FRONTIERS IN CHEMISTRY (2022)

Article Engineering, Electrical & Electronic

High Performance SAW Resonators Using LiTaO3/SiO2/4H-SiC Multilayer Substrate

Ming Li, Xin Xia, Kunpeng Li, Shuxian Wu, Jie Zou, Kunfeng Chen, Gongbin Tang

Summary: SAW resonators based on 36 degrees YX-LiTaO3/SiO2/4H-SiC multilayer substrates are fabricated in this work to effectively suppress acoustic energy leakage. By using interdigital transducers (IDT) with a tilted angle, a multilayer resonator with transverse mode suppression is achieved. The results show that the multilayer resonator exhibits extremely high Bode-Q and impedance ratio, and achieves a high figure of merit.

IEEE ELECTRON DEVICE LETTERS (2022)

Review Materials Science, Multidisciplinary

A multiscale view in functional materials

Guoqiang Shi, Dongfeng Xue

Summary: Functional materials exhibit diverse performances due to degrees of freedom in the lattice framework. Research on quantum materials can provide insights into multiscale processes. Understanding the sources of properties of functional materials from multiple degrees of freedom is crucial for their design.

PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL (2022)

Article Physics, Applied

Sapphire crystal growth and solid-liquid interface structure: An investigation by molecular dynamic simulation and Czochralski growth

Feng Liu, Kunfeng Chen, Chao Peng, Dongfeng Xue

Summary: This study investigates the multiscale behaviors of sapphire crystal growth along different crystal directions through theoretical and experimental studies. The results show that the growth behavior of sapphire along the c-axis is more complex compared to that along the a- and m-axes, involving solid-liquid and solid-solid transformations. Moreover, an abrupt change in the interfacial structure inhibits the transformation of liquid Al2O3 into α-Al2O3 along the c-axis.

JOURNAL OF APPLIED PHYSICS (2023)

Article Chemistry, Physical

Origin of oxygen-redox and transition metals dissolution in Ni-rich LixNi0.8Co0.1Mn0.1O2 cathode

Chun Cai, Dantong Zhang, Qi Zhang, Kunfeng Chen, Wenchao Hua, Chao Peng, Dongfeng Xue

Summary: The stability of lattice oxygen and transition metal sites in LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode were systematically explored, and the importance of manganese was demonstrated. The effects of lithium vacancies on lattice oxygen and transition metal were investigated through vacancy formation energy, unpaired spins, and net charge. This study provides insights into oxygen release and transition metal dissolution in Ni-rich NCM811.

JOURNAL OF CHEMICAL PHYSICS (2023)

Editorial Material Multidisciplinary Sciences

How to fast grow large-size crystals?

Feng Liu, Kunfeng Chen, Dongfeng Xue

Summary: Large-size crystals are essential in various fields, but their preparation remains difficult. Making breakthroughs in the theory and technology of large-size crystal growth is one of the top challenges in science and technology. Artificial intelligence is expected to play a significant role in achieving fast and large-size crystal growth.

INNOVATION (2023)

Article Chemistry, Multidisciplinary

Ce3+ ion regulated CoNi-hydroxides for ultrahigh charge rate supercapacitors

Fei Liu, Mengying Zhao, Kunfeng Chen, Mei Hu, Dongfeng Xue

Summary: This work demonstrates that Ce3+-regulated CoNi-LDHs significantly enhance the kinetics of electron transfer and ion motion by increasing layer positive charges and weakening O-H bonds. The addition of Ce3+ also decreases the energy barrier of proton diffusion and increases the hole carrier concentration, resulting in high rate capacitance and fast charge storage kinetics.

CRYSTENGCOMM (2023)

Article Chemistry, Multidisciplinary

Molecular dynamic simulations of the liquid structure and fast growth of Y3Al5O12

Xianjie Zhang, Feng Liu, Kunfeng Chen, Guilin Zhuang, Chao Peng, Dongfeng Xue

Summary: Investigating the liquid structure of yttrium aluminum garnet (YAG) at high temperatures is significant for various fields, and molecular dynamic simulations were used to study the structure of YAG within a certain temperature range and to grow a YAG single crystal. The coordination number and bond length between cations and anions changed after melting, which can be explained by Pauling's third rule. In the liquid YAG, the coordination number decreased and the main structural units were AlO4 and YO7, which provided insight into phase selection and enabled rapid growth of YAG using the Czochralski method.

CRYSTENGCOMM (2023)

Proceedings Paper Engineering, Electrical & Electronic

High Q SAW Resonators Based on Optimized Multilayer Substrate

Ming Li, Xin Xia, Kunpeng Li, Shuxian Wu, Kunfeng Chen, Jie Zou, Gongbin Tang

Summary: SAW devices based on multilayer substrate offer excellent solution for higher performance filters in the RF industry due to their high-quality factors, small temperature coefficient of frequency, and high stability. In this study, SAW resonators based on a multilayer substrate were simulated and fabricated, achieving a spurious free response and high figure of merit through careful selection of material thickness and calculation of power flow angle.

2022 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON ADVANCED MATERIALS AND PROCESSES FOR RF AND THZ APPLICATIONS, IMWS-AMP (2022)

Article Chemistry, Multidisciplinary

Anion-exchange synthesis of an MnCo2S4 electrocatalyst towards facilitated ultralong hydrogen evolution reaction in acidic and alkaline media

Abu Talha Aqueel Ahmed, Sankar Sekar, Shubhangi S. Khadtare, Nurul Taufiqu Rochman, Bathula Chinna, Abu Saad Ansari

Summary: In this study, MnCo2S4 nanosheet catalyst was successfully synthesized and found to exhibit superior performance in hydrogen evolution. Compared to MnCo2S4, MnCo2S4 showed low overpotentials, moderate Tafel slope, and excellent sustainability. The outstanding performance can be attributed to the increased number of electrochemically active sites and enhanced electronic conductivity on the catalyst surface.

CRYSTENGCOMM (2024)

Article Chemistry, Multidisciplinary

Er- and Yb-doped YGa3(BO3)4 and GdGa3(BO3)4 laser materials: high-temperature crystallization and related properties

Victor V. Maltsev, Elena A. Volkova, Elizaveta V. Koporulina, Diana D. Mitina, Vladimir L. Kosorukov, Anna I. Jiliaeva, Daniil A. Naprasnikov, Konstantin N. Gorbachenya, Viktor E. Kisel

Summary: The phase relationships, crystal properties and luminescence kinetics of two complex systems were studied, including unit cell parameters, segregation coefficients of impurities, and lifetimes of energy levels.

CRYSTENGCOMM (2024)

Article Chemistry, Multidisciplinary

Single crystal ferroelectric AlScN nanowires

Xiaoman Zhang, Wangwang Xu, W. J. Meng, Andrew C. Meng

Summary: This study successfully grew high-quality single crystal AlScN nanowires through ultra-high vacuum reactive sputtering technique and characterized their structure and properties. The nanowires exhibit significantly reduced mosaic spread and predominantly single ferroelectric domains, as well as a high piezoelectric constant.

CRYSTENGCOMM (2024)

Article Chemistry, Multidisciplinary

Unravelling the structure of the CSD cocrystal network using a fast near-optimal bipartisation algorithm for large networks

Tom E. de Vries, Elias Vlieg, Rene de Gelder

Summary: Networks are important for describing relationships between people, roads between cities, reactions between chemicals, and other interactions. Bipartiteness, dividing the network into two groups, can facilitate the study of the network's structure. We have developed an algorithm that can find a near-optimal bipartisation within a reasonable time frame and used it to uncover the hidden structure of the CSD cocrystal network.

CRYSTENGCOMM (2024)

Article Chemistry, Multidisciplinary

Dual control of passive light output direction by light and mechanical forces in elastic crystals

Chuchu Han, Jing Yang, Xin Zhang, Aisen Li, Jiang Peng

Summary: An elastic crystal based on a photo-reactive acylhydrazone derivative is reported, which exhibits reversible bending behavior under UV irradiation and heating. The crystal undergoes reversible E<->Z isomerization under light and heating conditions. The crystal demonstrates excellent elastic properties and the bending can be controlled to control the output direction of red light.

CRYSTENGCOMM (2024)

Article Chemistry, Multidisciplinary

N-Methylene-C bridged tetrazole and 1,2,4-triazole energetic salts as promising primary explosives

Lingfeng Zhang, Yu Wang, Yefeng Wang, Shuai Liu, Na Zhang, Mingmin Yang, Haixia Ma, Zhaoqi Guo

Summary: This study designs and synthesizes a series of high-energy salts compounds without heavy metal ions and azide groups. The molecular structures and stability of the compounds are confirmed through single-crystal X-ray diffraction and intermolecular interaction analysis. Furthermore, the thermal stability, energetic properties, and electrical initiation properties of the compounds are investigated, suggesting their potential as primary explosives.

CRYSTENGCOMM (2024)