4.1 Article

Silencing of Heat Shock Protein 70 Expression Enhances Radiotherapy Efficacy and Inhibits Cell Invasion in Endometrial Cancer Cell Line

期刊

CROATIAN MEDICAL JOURNAL
卷 50, 期 2, 页码 143-150

出版社

MEDICINSKA NAKLADA
DOI: 10.3325/cmj.2009.50.143

关键词

-

资金

  1. The Shandong Provincial Natural Science Foundation [Y2006C88]

向作者/读者索取更多资源

Aim To investigate the role of heat shock proteins 70 (HSP70) in radiosensitivity and invasiveness of endometrial cancer in vitro. Methods HSP70 expression was silenced in relatively radioresistant, well-differentiated human endometrial cancer cell line ISK, using small interference RNA method, or by HSP70 overexpression after transfecting a HSP70-expressing vector. The effect of HSP70 on ISK cell line response to irradiation was evaluated. The surviving fraction was measured using colony-formation assay. Apoptosis was detected by flow cytometry and HSP70 expression was determined by quantitative real-time polymerase chain reaction, western-blot, and/or immuocytochemistry. Cell invasiveness was measured using transwell invasion assay. Results HSP70 silencing caused a significant increase in irradiation-induced cell killing in comparison with control cells, with an enhancement factor of 1.27, and in the percentage of apoptotic cells (14.22% vs 6.74%, P = 0.021). After 4 Gy irradiation, mean +/- standard deviation survival fraction in ISK cells was reduced to 0.32 +/- 0.04 in comparison with control values but in ISK/siRNA-HSP70 cells the survival fraction was higher and amounted to 0.51 +/- 0.08 (P = 0.026). Silencing HSP70 significantly inhibited cell invasion before and after irradiation (106 +/- 19 vs 219 +/- 18 and 119 +/- 16 vs 256 +/- 31, P = 0.007). On the contrary, ectopic overexpression of HSP70 attenuated irradiation-induced apoptosis (7.15% vs 4.08%, P = 0.043) and induced more ISK/HSP70 cells invaded through the filters than mock-infected cells before and after irradiation (274 +/- 21 vs 194 +/- 16 before irradiation, and 298 +/- 24 vs 227 +/- 19 after irradiation, respectively, P = 0.032). Conclusion Disruption of HSP70-induced cytoprotection during irradiation enhances therapeutic effect of irradiation, which makes HSP70 a promising target in the research of endometrial cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据