4.6 Article

Antisense inhibition of secretory and cytosolic phospholipase A2 reduces the mortality in rats with sepsis

期刊

CRITICAL CARE MEDICINE
卷 40, 期 7, 页码 2132-2140

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/CCM.0b013e31824e1e20

关键词

antisense oligonucleotide; mortality; phospholipase A(2); sepsis

向作者/读者索取更多资源

Objective: Phospholipase A(2) has been implicated to play a pivotal role in the pathogenesis of sepsis syndrome. The two major forms of phospholipase A(2) isoenzymes, secretory phospholipase A(2) and cytosolic phospholipase A(2), are overexpressed during sepsis. The objective of this study was to test the hypothesis that inhibition of the overexpressed secretory phospholipase A(2) and cytosolic phospholipase A(2) during sepsis benefits the disease's eventual outcome. Design: Short-chain antisense oligonucleotide molecules were designed with the aid of computer software programs, and their in vitro efficacies were assessed in cell culture systems based on inhibition of target protein expression. The in vivo efficacies were determined in intact sepsis rats using 35-day survival rate as a primary efficacy end point. Setting: Animal research laboratory at a university. Subjects: Male Sprague-Dawley rats (180-200 g). Interventions: Sepsis was induced by cecal ligation and puncture. Antibiotics were administered subcutaneously once daily at 12 mg/kg, for 20 days. Oligonucleotides (antisense or mismatch) were administered intravenously once daily at 2 mg/kg to 0.8 mg/kg in a decreasing order, for 20 days. Measurements and Main Results: In cell culture systems, 21 of the 105 antisense constructs were found to be efficacious in inhibiting secretory phospholipase A(2) Ila and cytosolic phospholipase A(2) IVa protein expression. In sepsis rats, antisense oligonucleotides were capable of reducing their target protein expression by 18%-61% in major organs such as liver, heart, and kidney. In animal experiments, sepsis without any treatment (Group 1) had a median survival time of 2 days and a zero (0) percent survival rate at day 14. Sepsis with antibiotic treatment (Group 2) had a median survival time of 6 days and a 35-day survival rate of 28%. Sepsis with cotreatment of antibiotics and antisense oligonucleotides (one against secretory phospholipase A(2) IIa and the other against cytosolic phospholipase A2 IVa) (Group 4) increased the median survival time from 6 to 35 days and the 35-day survival rate from 28% to 58.8% as compared with antibiotics alone (Group 4 vs. Group 2; p<.05). Sepsis with cotreatment of antibiotics and mismatch oligonucleotides (Group 3) did not affect the median survival time and the 35-day survival rate as compared to antibiotics alone (Group 3 vs. Group 2; p>.05). Conclusions: The results demonstrate that antisense strategy against secretory phospholipase A(2) Ila and cytosolic phospholipase A2 IVa can inhibit their target protein expression in major organs and greatly improve the clinical outcome, i.e., an absolute reduction in 35-day mortality of 30.8%, in rats with sepsis. Our studies, thus, provide an improved method for the treatment of sepsis by targeting multiple forms of phospholipase A(2) isoenzymes with DNA antisense oligomers. (Crit Care Med 2012; 40:2132-2140)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据