4.8 Review

Time-domain ab initio modeling of excitation dynamics in quantum dots

期刊

COORDINATION CHEMISTRY REVIEWS
卷 263, 期 -, 页码 161-181

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.ccr.2013.08.035

关键词

Semiconductor and metal nanoparticles; Time-domain density functional theory; Nonradiative relaxation; Nonadiabatic molecular dynamics; Multiple-exciton generation; Electron-phonon interactions

资金

  1. US National Science Foundation
  2. US Department of Energy
  3. KAKENHI of Japan

向作者/读者索取更多资源

The review discusses the results of ab initio time-dependent density functional theory and non-adiabatic molecular dynamics simulations of photoinduced dynamics of charges, excitons, plasmons, and phonons in semiconductor and metallic quantum dots (QDs). The simulations create an explicit time-domain representation of the excited-state processes, including elastic and inelastic electron-phonon scattering, multiple exciton generation, fission, and recombination. These nonequilibrium phenomena control the optical and electronic properties of QDs. Our approach can account for QD size and shape, as well as chemical details of QD structure, such as dopants, defects, core/shell regions, surface ligands, and unsaturated bonds. Each of these variations significantly alters the properties of photoexcited QDs. The insights reported in this review provide a comprehensive understanding of the excited-state dynamics in QDs and suggest new ways of controlling the photo-induced processes. The design principles that follow, guide development of photovoltaic cells, electronic and spintronic devices, biological labels, and other systems rooted in the unique physical and chemical properties of nanoscale materials. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据