4.5 Article

Effluent, nutrient and organic matter export from shrimp and fish ponds causing eutrophication in coastal and back-reef waters of NE Hainan, tropical China

期刊

CONTINENTAL SHELF RESEARCH
卷 57, 期 -, 页码 92-104

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.csr.2012.05.006

关键词

Aquaculture; Shrimp and fish ponds; Nutrient export; Back-reef area; Eutrophication; Hainan

资金

  1. German Federal Ministry of Education and Research [FKZ 03F0457A, FKZ 03F0620A]
  2. Ministry of Science and Technology of China [2007DFB20380]
  3. Lucia Herbeck

向作者/读者索取更多资源

Global aquaculture has grown at a rate of 8.7% per year since 1970. Particularly along the coasts of tropical Asia, aquaculture ponds have expanded rapidly at the expense of natural wetlands. The objectives of this study were (i) to characterize the extent and production process of brackish-water pond aquaculture at the NE coast of Hainan, tropical China, (ii) to quantify effluent and organic carbon, nitrogen and phosphorus export from shrimp and fish ponds and (iii) to trace their effect on the water quality in adjacent estuarine and nearshore coastal waters harboring seagrass meadows and coral reefs. During two expeditions in 2008 and 2009, we determined dissolved inorganic nutrients, dissolved organic carbon (DOC) and dissolved organic nitrogen (DON), chlorophyll a (chl a) and particulate organic matter (POM) in aquaculture ponds, drainage channels and coastal waters in three areas varying in extent of aquaculture ponds. From the analysis of satellite images we calculated a total of 39.6 km(2) covered by shrimp and fish ponds in the study area. According to pond owners, there is no standardized production pattern for feeding management and water exchange. Nutrient and suspended matter concentrations were high in aquaculture ponds and drainage channels, but varied considerably. The calculated annual export of total dissolved nitrogen (TDN) and particulate nitrogen (PN) from pond aquaculture into coastal waters was 612 and 680 t yr(-1), respectively. High concentrations of dissolved inorganic nitrogen (DIN), phosphate and chl a at the majority of the coastal stations point at eutrophication of coastal waters, especially close to shore. Coastal eutrophication driven by the introduction of untreated aquaculture effluents may be especially harmful in back-reef areas, where estuarine retention and mixing with open ocean water is restricted thus threatening seagrasses and corals. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据