4.7 Article

Endothelial sphingosine kinase/SPNS2 axis is critical for vessel-like formation by human mesoangioblasts

期刊

JOURNAL OF MOLECULAR MEDICINE-JMM
卷 93, 期 10, 页码 1145-1157

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00109-015-1292-0

关键词

Mesoangioblasts; Endothelial cells; Sphingosine kinase; Migration; Morphogenesis

资金

  1. Fondi di Ateneo
  2. Ente Cassa di Risparmio di Firenze
  3. Associazione Italiana Ricerca sul Cancro (AIRC) [14266]

向作者/读者索取更多资源

The interaction between endothelial cells and pericytes is crucial for the stabilization of newly formed vessels in angiogenesis. The comprehension of the mechanisms regulating peiicyte recruitment might open therapeutical perspectives on vascular-related pathologies. Sphingosine 1phosphate (SIP) is a bioactive sphingolipid that derives from sphingomyelin catabolism and regulates biological functions in cell survival, proliferation, and differentiation. In this study, we aimed to identify the role of SIP axis in the intercellular communication between human mesenchymal progenitor mesoangioblasts (MAB) and endothelial cells (human microvascular endothelial cells (HMVEC)) in the formation of capillary-like structures. We demonstrated that the SIP biosynthetic pathway brought about by sphingosine kinases (SK) SKI and SK2 as well as spinster homolog 2 (SPNS2) transporter in H-MVEC is crucial for MAB migration measured by Boyden chambers and for the formation and stabilization of capillary-like structures in a 3D Matrigel culture. Moreover, the conditioned medium (CM) harvested from HMVEC, where SKI, 5K2, and SPNS2 were down-regulated, exerted a significantly diminished effect on MAB capillary morphogenesis and migration. Notably, we demonstrated that S I Pi and Si p3 receptors were positively involved in CM-induced capillary-like formation and migration, while S I P2 exerted a negative role on CM-induced migratory action of MAB. Finally, SK inhibition as well as MAB SlPi and S1P3 down-regulation impaired HMVEC-MAB cross-talk significantly reducing in vivo angiogenesis evaluated by Matrigel plug assay. These findings individuate novel targets for the employment of MAB in vascular-related pathologic conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据