4.7 Article

ECG signal denoising and baseline wander correction based on the empirical mode decomposition

期刊

COMPUTERS IN BIOLOGY AND MEDICINE
卷 38, 期 1, 页码 1-13

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2007.06.003

关键词

electrocardiogram (ECG); stress ECG; ECG enhancement; empirical mode decomposition (EMD); denoising; baseline wander; baseline drift

向作者/读者索取更多资源

The electrocardiogram (ECG) is widely used for diagnosis of heart diseases. Good quality ECG are utilized by physicians for interpretation and identification of physiological and pathological phenomena. However, in real situations, ECG recordings are often corrupted by artifacts. Two dominant artifacts present in ECG recordings are: (1) high-frequency noise caused by electromyogram induced noise, power line interferences, or mechanical forces acting on the electrodes; (2) baseline wander (BW) that may be due to respiration or the motion of the patients or the instruments. These artifacts severely limit the utility of recorded ECGs and thus need to be removed for better clinical evaluation. Several methods have been developed for ECG enhancement. In this paper, we propose a new ECG enhancement method based on the recently developed empirical mode decomposition (EMD). The proposed EMD-based method is able to remove both high-frequency noise and BW with minimum signal distortion. The method is validated through experiments on the MIT-BIH databases. Both quantitative and qualitative results are given. The simulations show that the proposed EMD-based method provides very good results for denoising and BW removal. (C) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据