4.7 Article

Two-dimensional frequency-domain visco-elastic full waveform inversion: Parallel algorithms, optimization and performance

期刊

COMPUTERS & GEOSCIENCES
卷 37, 期 4, 页码 444-455

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cageo.2010.09.013

关键词

Seismic wave modelling; Finite element discontinuous Galerkin; Multi-parameter seismic imaging; Quasi-Newton optimization; Massively parallel computing

资金

  1. SEISCOPE consortium
  2. BP
  3. CGG-VERITAS
  4. ENI
  5. EXXON-MOBIL
  6. SHELL
  7. TOTAL
  8. Agence Nationale de la Recherche (ANR) [ANR-05-NT05-2-42427]
  9. IDRIS national center [082280]

向作者/读者索取更多资源

Full waveform inversion (FWI) is an appealing seismic data-fitting procedure for the derivation of high-resolution quantitative models of the subsurface at various scales. Full modelling and inversion of viscoelastic waves from multiple seismic sources allow for the recovering of different physical parameters, although they remain computationally challenging tasks. An efficient massively parallel, frequency-domain FWI algorithm is implemented here on large-scale distributed-memory platforms for imaging two-dimensional visco-elastic media. The resolution of the elastodynamic equations, as the forward problem of the inversion, is performed in the frequency domain on unstructured triangular meshes, using a low-order finite element discontinuous Galerkin method. The linear system resulting from discretization of the forward problem is solved with a parallel direct solver. The inverse problem, which is presented as a non-linear local optimization problem, is solved in parallel with a quasi-Newton method, and this allows for reliable estimation of multiple classes of visco-elastic parameters. Two levels of parallelism are implemented in the algorithm, based on message passing interfaces and multi-threading, for optimal use of computational time and the core-memory resources available on modern distributed-memory multi-core computational platforms. The algorithm allows for imaging of realistic targets at various scales, ranging from near-surface geotechnic applications to crustal-scale exploration. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据