4.7 Article

The density matrix renormalization group algorithm on kilo-processor architectures: Implementation and trade-offs

期刊

COMPUTER PHYSICS COMMUNICATIONS
卷 185, 期 6, 页码 1570-1581

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cpc.2014.02.021

关键词

Strongly correlated systems; DMRG; GPU acceleration; FPGA acceleration

资金

  1. Hungarian Research Fund (OTKA) [NN110360, K100908, K84267]
  2. [TAMOP-4.2.2.C-11/1/KONV-2012-0004]
  3. [TAMOP-4.2.1./B-11/2/KMR-2011-002]
  4. [TAMOP-4.2.2./B-10/1-2010-0014]

向作者/读者索取更多资源

In the numerical analysis of strongly correlated quantum lattice models one of the leading algorithms developed to balance the size of the effective Hilbert space and the accuracy of the simulation is the density matrix renormalization group (DMRG) algorithm, in which the run-time is dominated by the iterative diagonalization of the Hamilton operator. As the most time-dominant step of the diagonalization can be expressed as a list of dense matrix operations, the DMRG is an appealing candidate to fully utilize the computing power residing in novel kilo-processor architectures. In the paper a smart hybrid CPU GPU implementation is presented, which exploits the power of both CPU and GPU and tolerates problems exceeding the GPU memory size. Furthermore, a new CUDA kernel has been designed for asymmetric matrix vector multiplication to accelerate the rest of the diagonalization. Besides the evaluation of the GPU implementation, the practical limits of an FPGA implementation are also discussed. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据