4.7 Article

3D coupled HM-XFEM modeling with cohesive zone model and applications to non planar hydraulic fracture propagation and multiple hydraulic fractures interference

期刊

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2018.08.009

关键词

X-FEM; Hydro-mechanical coupling; Fluid-driven fracture; Cohesive zone model; Fracture spacing; Fracture interference

资金

  1. EDF
  2. IFPEN
  3. French National Research Agency [ANR-10-LABEX-21-RESSOURCES21]
  4. Regional Council of Lorraine
  5. French National Research Agency (ANR) [ANR-17-CE06-0016]

向作者/读者索取更多资源

A 3D fully coupled hydromechanical model for the simulation of fluid-driven fracture propagation through poroelastic saturated media is presented and compared to several analytical or numerical benchmarks. The hydromechanical coupling in the porous matrix is derived within the framework of the generalized Biot theory and the fluid flow in the fractures satisfies the lubrication equation. The presence and propagation of fluid-driven fractures is handled with the extended finite element method and the propagation of the fluid-driven fractures is governed by a mixed linear cohesive law relying on a stable mortar formalism. A comparison between numerical results and a semi-analytical solution for plane fluid-driven fractures in porous media assess the validity of the proposed model. Then, a procedure for the propagation of fluid-driven fractures on non predefined paths is detailed. In particular, the fracture reorientation angle is computed exclusively from cohesive quantities. Various numerical experiments are performed to study the interferences between neighboring fluid-driven fractures as well as the reorientation of fluid-driven fractures under complex stress conditions. Finally, the model is extended to discontinuity junctions and an application to arrays of vertical fractures initiated from horizontal wells is presented. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据