4.7 Article

Stability and convergence of sequential methods for coupled flow and geomechanics: Drained and undrained splits

期刊

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
卷 200, 期 23-24, 页码 2094-2116

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2011.02.011

关键词

Geomechanics; Poromechanics; Stability analysis; Convergence analysis; Drained split; Undrained split

资金

  1. Stanford University Petroleum Research Institute for Reservoir Simulation - SUPRI-B
  2. Computer Modeling Group Foundation
  3. Eni S.p.A., and the ARCO Chair in Energy Studies

向作者/读者索取更多资源

We perform a stability and convergence analysis of sequential methods for coupled flow and geomechanics, in which the mechanics sub-problem is solved first. We consider slow deformations, so that inertia is negligible and the mechanical problem is governed by an elliptic equation. We use Biot's self-consistent theory to obtain the classical parabolic-type flow problem. We use a generalized midpoint rule (parameter a between 0 and 1) time discretization, and consider two classical sequential methods: the drained and undrained splits. The von Neumann method provides sharp stability estimates for the linear poroelasticity problem. The drained split with backward Euler time discretization (alpha = 1) is conditionally stable, and its stability depends only on the coupling strength, and it is independent of time step size. The drained split with the midpoint rule (alpha = 0.5) is unconditionally unstable. The mixed time discretization, with alpha = 1.0 for mechanics and alpha = 0.5 for flow, has the same stability properties as the backward Euler scheme. The von Neumann method indicates that the undrained split is unconditionally stable when alpha >= 0.5. We extend the stability analysis to the nonlinear regime (poro-elastoplasticity) via the energy method. It is well known that the drained split does not inherit the contractivity property of the continuum problem, thereby precluding unconditional stability. For the undrained split we show that it is B-stable (therefore unconditionally stable at the algorithmic level) when alpha >= 0.5. We also analyze convergence of the drained and undrained splits, and derive the a priori error estimates from matrix algebra and spectral analysis. We show that the drained split with a fixed number of iterations is not convergent even when it is stable. The undrained split with a fixed number of iterations is convergent for a compressible system (i.e., finite Blot modulus). For a nearly-incompressible system (i.e., very large Blot modulus), the undrained split loses first-order accuracy, and becomes non-convergent in time. We also study the rate of convergence of both splits when they are used in a fully-iterated sequential scheme. When the medium permeability is high or the time step size is large, which corresponds to a high diffusion of pressure, the error amplification of the drained split is lower and therefore converges faster than the undrained split. The situation is reversed in the case of low permeability and small time step size. We provide numerical experiments supporting all the stability and convergence estimates of the drained and undrained splits, in the linear and nonlinear regimes. We also show that our spatial discretization (finite volumes for flow and finite elements for mechanics) removes the well-documented spurious instability in consolidation problems at early times. (c) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Review Computer Science, Interdisciplinary Applications

Simulation of mineral dissolution at the pore scale with evolving fluid-solid interfaces: review of approaches and benchmark problem set

Sergi Molins, Cyprien Soulaine, Nikolaos I. Prasianakis, Aida Abbasi, Philippe Poncet, Anthony J. C. Ladd, Vitalii Starchenko, Sophie Roman, David Trebotich, Hamdi A. Tchelepi, Carl I. Steefel

Summary: This study introduces a benchmark problem for evaluating the simulation of single-phase flow, reactive transport, and solid geometry evolution at the pore scale. By comparing results from five different codes, it demonstrates significant agreement both quantitatively and qualitatively, providing a strong benchmark for validating and testing pore-scale codes.

COMPUTATIONAL GEOSCIENCES (2021)

Article Computer Science, Interdisciplinary Applications

Finite-volume simulation of capillary-dominated flow in matrix-fracture systems using interface conditions

Ammar H. Alali, Francois P. Hamon, Bradley T. Mallison, Hamdi A. Tchelepi

Summary: Investigating the use of discrete interface conditions at the matrix-fracture interface to improve flux computation accuracy without extreme grid refinement. Analyzing the interaction of the upwinding scheme with discrete interface conditions and illustrating the importance of interface conditions in accurately capturing matrix-fracture flux and flow dynamics representation.

COMPUTATIONAL GEOSCIENCES (2021)

Article Computer Science, Interdisciplinary Applications

Multiscale formulation of frictional contact mechanics at the pore scale

Yashar Mehmani, Nicola Castelletto, Hamdi A. Tchelepi

Summary: This study introduces a pore-level multiscale method that efficiently approximates direct numerical simulation with controllable accuracy for predicting the elastic response of solid media containing cracks or defects.

JOURNAL OF COMPUTATIONAL PHYSICS (2021)

Article Engineering, Chemical

Reduced method for rapid multiphase isenthalpic flash in thermal simulation

Michael Connolly, Huanquan Pan, Motonao Imai, Hamdi A. Tchelepi

Summary: Thermal enhanced oil recovery involves complex interplays of mass and energy transport processes with phase behavior, requiring thermal compositional simulation and isenthalpic flash calculations. Isothermal flash algorithms have been refined over the years, while isenthalpic flash remains a challenge due to unknown temperatures and nonlinear enthalpy behavior. The injection of steam in thermal EOR further complicates phase equilibrium calculations, making water a thermodynamically dominant component that cannot be excluded from simulations.

CHEMICAL ENGINEERING SCIENCE (2021)

Article Engineering, Multidisciplinary

Smooth implicit hybrid upwinding for compositional multiphase flow in porous media

Sebastian B. M. Bosma, Francois P. Hamon, Brad T. Mallison, Hamdi A. Tchelepi

Summary: In subsurface multiphase flow simulations, poor performance of nonlinear solvers is a significant issue, but a new optimized scheme can greatly reduce the number of nonlinear iterations and improve efficiency.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2022)

Article Geosciences, Multidisciplinary

Striving to translate shale physics across ten orders of magnitude: What have we learned?

Yashar Mehmani, Timothy Anderson, Yuhang Wang, Saman A. Aryana, Ilenia Battiato, Hamdi A. Tchelepi, Anthony R. Kovscek

Summary: Shales will play a key role in the transition to renewable energy but face challenges due to their nanoporous structure and extreme heterogeneity. Challenges include understanding fluid flow and phase behavior in shales, and the lack of scale separation for reliable physics descriptions. Advances in computational power, imaging technology, and machine learning are helping to address these challenges through scale translation methods.

EARTH-SCIENCE REVIEWS (2021)

Article Engineering, Petroleum

A Cut-Cell Polyhedral Finite Element Model for Coupled Fluid Flow and Mechanics in Fractured Reservoirs

I Shovkun, H. A. Tchelepi

Summary: The study aims to develop a spatial discretization scheme that cuts the matrix grid with fracture planes to model fluid flow and mechanical deformation in fractured reservoirs. It utilizes traditional formulations and numerical harmonic shape functions to accurately describe the behavior of fractured formations. The proposed approach is validated and compared with existing methods, demonstrating its feasibility and effectiveness.

SPE JOURNAL (2022)

Article Computer Science, Software Engineering

QuantImPy: Minkowski functionals and functions with Python

Arnout M. P. Boelens, Hamdi A. Tchelepi

Summary: The Minkowski functionals and functions are a family of morphological measures used to describe the shape and connectedness of a system. The QuantImPy Python package presented in this paper can compute Minkowski functionals and functions, perform basic morphological operations, and compute distance maps efficiently. QuantImPy is easy to install, well-documented, integrated with existing Python packages, and open source.

SOFTWAREX (2021)

Article Computer Science, Interdisciplinary Applications

Scalable preconditioning for the stabilized contact mechanics problem

Andrea Franceschini, Nicola Castelletto, Joshua A. White, Hamdi A. Tchelepi

Summary: In this paper, a family of preconditioning strategies for the contact problem in fractured and faulted porous media is presented. The strategies combine low-order continuous finite elements and piecewise constant Lagrange multipliers to simulate bulk deformation and impose frictional contact constraints. A novel jump stabilization technique is introduced to improve previous work, and scalable preconditioning strategies that exploit the block structure of the Jacobian matrix are designed. The proposed preconditioners achieve success by eliminating the Lagrange multiplier degrees of freedom and efficiently solving the pseudo-Schur complement. Numerical results demonstrate the theoretical properties, scalability, and robustness of the preconditioner, along with a comparison to other approaches in the literature.

JOURNAL OF COMPUTATIONAL PHYSICS (2022)

Article Engineering, Multidisciplinary

Second-order accurate hierarchical approximate factorizations for solving sparse linear systems

Bazyli Klockiewicz, Leopold Cambier, Ryan Humble, Hamdi Tchelepi, Eric Darve

Summary: This paper presents a second-order accurate approach to sparsify the off-diagonal matrix blocks in solving sparse linear systems. By sparsifying the fill-in matrix blocks in block Gaussian elimination, an approximate factorization of the given matrix is computed. The new approach incorporates squared 2-norm of the incurred error in the sparsification of a matrix block, resulting in faster convergence and improved overall performance of the algorithm.

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING (2022)

Article Electrochemistry

Stability-Guided Strategies to Mitigate Dendritic Growth in Lithium-Metal Batteries

Weiyu Li, Hamdi A. Tchelepi, Yiguang Ju, Daniel M. Tartakovsky

Summary: Dendritic growth is a major cause of degradation and failure in lithium-metal batteries. This study shows that changes in the local electric field and the use of anisotropic electrolytes can suppress dendritic growth of lithium metal.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2022)

Article Computer Science, Interdisciplinary Applications

High resolution adaptive implicit method for reactive transport in heterogeneous porous media

Ricardo H. Deucher, Hamdi A. Tchelepi

Summary: The Adaptive Implicit Method (AIM) is a technique that reduces computational costs in simulations of field scale displacements in porous media. By using a mixed implicit/explicit time discretization and high-order fluxes, AIM overcomes limitations of purely explicit approaches and improves accuracy. A new scheme is introduced that blends implicit and explicit time discretizations along with single-point upwind and a high-order flux-limited total variation diminishing approximation of numerical fluxes, resulting in reduced numerical diffusion and improved accuracy.

JOURNAL OF COMPUTATIONAL PHYSICS (2022)

Article Computer Science, Interdisciplinary Applications

Sequential fully implicit newton method for flow and transport with natural black-oil formulation

Jiawei Li, Pavel Tomin, Hamdi Tchelepi

Summary: There is an increasing interest in developing robust and efficient sequential methods for reservoir simulation. The sequential fully implicit Newton (SFIN) method addresses the slow sequential coupling convergence issue when flow and transport problems are strongly coupled. However, the original SFIN algorithm requires fixed primary variables during the simulation. In this work, strategies are proposed to handle inconsistent primary variables and extend the SFIN method to the natural black-oil formulation.

COMPUTATIONAL GEOSCIENCES (2023)

Article Computer Science, Interdisciplinary Applications

Comparison of nonlinear field-split preconditioners for two-phase flow in heterogeneous porous media

Mamadou N'diaye, Francois P. Hamon, Hamdi A. Tchelepi

Summary: This work focuses on the development of a two-step field-split nonlinear preconditioner to accelerate the convergence of two-phase flow and transport in heterogeneous porous media. The proposed Field-Split Multiplicative Schwarz Newton (FSMSN) algorithm consists of a preconditioning step and a global step, achieving faster convergence compared to existing preconditioners and standard solution strategies. The impact of the upwinding scheme and the dynamic adaptation of subproblem tolerance in the preconditioning step are highlighted.

COMPUTATIONAL GEOSCIENCES (2023)

Article Geosciences, Multidisciplinary

Pore-Scale Fluid Dynamics Resolved in Pressure Fluctuations at the Darcy Scale

Catherine Spurin, Gareth G. Roberts, Conor P. B. O'Malley, Takeshi Kurotori, Samuel Krevor, Martin J. Blunt, Hamdi Tchelepi

Summary: Complex pore-scale dynamics during multiphase flow through porous rocks are not accounted for in large-scale models. However, we demonstrate that pressure fluctuations measured at the core-scale can reflect fluid displacements at the pore-scale. The spectral characteristics of pressure data provide information about flow dynamics, sample size, and rock heterogeneity. Understanding fluid flow in porous rocks is crucial for the safe storage of CO2 and hydrogen.

GEOPHYSICAL RESEARCH LETTERS (2023)

Article Engineering, Multidisciplinary

Probabilistic physics-guided transfer learning for material property prediction in extrusion deposition additive manufacturing

Akshay J. Thomas, Mateusz Jaszczuk, Eduardo Barocio, Gourab Ghosh, Ilias Bilionis, R. Byron Pipes

Summary: We propose a physics-guided transfer learning approach to predict the thermal conductivity of additively manufactured short-fiber reinforced polymers using micro-structural characteristics obtained from tensile tests. A Bayesian framework is developed to transfer the thermal conductivity properties across different extrusion deposition additive manufacturing systems. The experimental results demonstrate the effectiveness and reliability of our method in accounting for epistemic and aleatory uncertainties.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Discovering a reaction-diffusion model for Alzheimer's disease by combining PINNs with symbolic regression

Zhen Zhang, Zongren Zou, Ellen Kuhl, George Em Karniadakis

Summary: In this study, deep learning and artificial intelligence were used to discover a mathematical model for the progression of Alzheimer's disease. By analyzing longitudinal tau positron emission tomography data, a reaction-diffusion type partial differential equation for tau protein misfolding and spreading was discovered. The results showed different misfolding models for Alzheimer's and healthy control groups, indicating faster misfolding in Alzheimer's group. The study provides a foundation for early diagnosis and treatment of Alzheimer's disease and other misfolding-protein based neurodegenerative disorders using image-based technologies.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

A neural network-based enrichment of reproducing kernel approximation for modeling brittle fracture

Jonghyuk Baek, Jiun-Shyan Chen

Summary: This paper introduces an improved neural network-enhanced reproducing kernel particle method for modeling the localization of brittle fractures. By adding a neural network approximation to the background reproducing kernel approximation, the method allows for the automatic location and insertion of discontinuities in the function space, enhancing the modeling effectiveness. The proposed method uses an energy-based loss function for optimization and regularizes the approximation results through constraints on the spatial gradient of the parametric coordinates, ensuring convergence.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Stabilized mixed material point method for incompressible fluid flow

Bodhinanda Chandra, Ryota Hashimoto, Shinnosuke Matsumi, Ken Kamrin, Kenichi Soga

Summary: This paper proposes new and robust stabilization strategies for accurately modeling incompressible fluid flow problems in the material point method (MPM). The proposed approach adopts a monolithic displacement-pressure formulation and integrates two stabilization strategies to ensure stability. The effectiveness of the proposed method is validated through benchmark cases and real-world scenarios involving violent free-surface fluid motion.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

A unified analytical expression of the tangent stiffness matrix of holonomic constraints

Chao Peng, Alessandro Tasora, Dario Fusai, Dario Mangoni

Summary: This article discusses the importance of the tangent stiffness matrix of constraints in multibody systems and provides a general formulation based on quaternion parametrization. The article also presents the analytical expression of the tangent stiffness matrix derived through linearization. Examples demonstrate the positive effect of this additional stiffness term on static and eigenvalue analyses.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

On the detection of nonlinear normal mode-related isolated branches of periodic solutions for high-dimensional nonlinear mechanical systems with frictionless contact interfaces

Thibaut Vadcard, Fabrice Thouverez, Alain Batailly

Summary: This contribution presents a methodology for detecting isolated branches of periodic solutions to nonlinear mechanical equations. The method combines harmonic balance method-based solving procedure with the Melnikov energy principle. It is able to predict the location of isolated branches of solutions near families of autonomous periodic solutions. The relevance and accuracy of this methodology are demonstrated through academic and industrial applications.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Machine learning powered sketch aided design via topology optimization

Weisheng Zhang, Yue Wang, Sung-Kie Youn, Xu Guo

Summary: This study proposes a sketch-guided topology optimization approach based on machine learning, which incorporates computer sketches as constraint functions to improve the efficiency of computer-aided structural design models and meet the design intention and requirements of designers.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Reduced order isogeometric boundary element methods for CAD-integrated shape optimization in electromagnetic scattering

Leilei Chen, Zhongwang Wang, Haojie Lian, Yujing Ma, Zhuxuan Meng, Pei Li, Chensen Ding, Stephane P. A. Bordas

Summary: This paper presents a model order reduction method for electromagnetic boundary element analysis and extends it to computer-aided design integrated shape optimization of multi-frequency electromagnetic scattering problems. The proposed method utilizes a series expansion technique and the second-order Arnoldi procedure to reduce the order of original systems. It also employs the isogeometric boundary element method to ensure geometric exactness and avoid re-meshing during shape optimization. The Grey Wolf Optimization-Artificial Neural Network is used as a surrogate model for shape optimization, with radar cross section as the objective function.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Volume conservation issue within SPH models for long-time simulations of violent free-surface flows

C. Pilloton, P. N. Sun, X. Zhang, A. Colagrossi

Summary: This paper investigates the smoothed particle hydrodynamics (SPH) simulations of violent sloshing flows and discusses the impact of volume conservation errors on the simulation results. Different techniques are used to directly measure the particles' volumes and stabilization terms are introduced to control the errors. Experimental comparisons demonstrate the effectiveness of the numerical techniques.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Convolution finite element based digital image correlation for and strain measurements

Ye Lu, Weidong Zhu

Summary: This work presents a novel global digital image correlation (DIC) method based on a convolution finite element (C-FE) approximation. The C-FE based DIC provides highly smooth and accurate displacement and strain results with the same element size as the usual finite element (FE) based DIC. The proposed method's formulation and implementation, as well as the controlling parameters, have been discussed in detail. The C-FE method outperformed the FE method in all tested examples, demonstrating its potential for highly smooth, accurate, and robust DIC analysis.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Optimization based on performance of lungs in body: Lungs performance-based optimization (LPO)

Mojtaba Ghasemi, Mohsen Zare, Amir Zahedi, Pavel Trojovsky, Laith Abualigah, Eva Trojovska

Summary: This paper introduces Lung performance-based optimization (LPO), a novel algorithm that draws inspiration from the efficient oxygen exchange in the lungs. Through experiments and comparisons with contemporary algorithms, LPO demonstrates its effectiveness in solving complex optimization problems and shows potential for a wide range of applications.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Integrated optimization of components' layout and structural topology with considering the interface stress constraint

Jingyu Hu, Yang Liu, Huixin Huang, Shutian Liu

Summary: In this study, a new topology optimization method is proposed for structures with embedded components, considering the tension/compression asymmetric interface stress constraint. The method optimizes the topology of the host structure and the layout of embedded components simultaneously, and a new interpolation model is developed to determine interface layers between the host structure and embedded components.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

The anisotropic graph neural network model with multiscale and nonlinear characteristic for turbulence simulation

Qiang Liu, Wei Zhu, Xiyu Jia, Feng Ma, Jun Wen, Yixiong Wu, Kuangqi Chen, Zhenhai Zhang, Shuang Wang

Summary: In this study, a multiscale and nonlinear turbulence characteristic extraction model using a graph neural network was designed. This model can directly compute turbulence data without resorting to simplified formulas. Experimental results demonstrate that the model has high computational performance in turbulence calculation.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Multi-temporal decomposition for elastoplastic ratcheting solids

Jacinto Ulloa, Geert Degrande, Jose E. Andrade, Stijn Francois

Summary: This paper presents a multi-temporal formulation for simulating elastoplastic solids under cyclic loading. The proper generalized decomposition (PGD) is leveraged to decompose the displacements into multiple time scales, separating the spatial and intra-cyclic dependence from the inter-cyclic variation, thereby reducing computational burden.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Automated translation and accelerated solving of differential equations on multiple GPU platforms

Utkarsh Utkarsh, Valentin Churavy, Yingbo Ma, Tim Besard, Prakitr Srisuma, Tim Gymnich, Adam R. Gerlach, Alan Edelman, George Barbastathis, Richard D. Braatz, Christopher Rackauckas

Summary: This article presents a high-performance vendor-agnostic method for massively parallel solving of ordinary and stochastic differential equations on GPUs. The method integrates with a popular differential equation solver library and achieves state-of-the-art performance compared to hand-optimized kernels.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)