4.5 Article

Goodness-of-fit testing in growth curve models: A general approach based on finite differences

期刊

COMPUTATIONAL STATISTICS & DATA ANALYSIS
卷 55, 期 2, 页码 1086-1098

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.csda.2010.09.003

关键词

Growth curve; Goodness-of-fit; Finite difference

向作者/读者索取更多资源

Growth curve models are routinely used in various fields such as biology, ecology, demography, population dynamics, finance, econometrics, etc. to study the growth pattern of different populations and the variables linked with them. Many different kinds of growth patterns have been used in the literature to model the different types of realistic growth mechanisms. It is generally a matter of substantial benefit to the data analyst to have a reasonable idea of the nature of the growth pattern under study. As a result, goodness-of-fit tests for standard growth models are often of considerable practical value. In this paper we develop some natural goodness-of-fit tests based on finite differences of the size variables under consideration. The method is general in that it is not limited to specific parametric forms underlying the hypothesized model so long as an appropriate finite difference of some function of the size variables can be made to vanish. In addition it allows the testing process to be carried out under a set up which manages to relax most of the assumptions made by Bhattacharya et al. (2009); these assumptions are generally reasonable but not guaranteed to hold universally. Thus our proposed method has a very wide scope of application. The performance of the theory developed is illustrated numerically through several sets of real data and through simulations. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Computer Science, Interdisciplinary Applications

One point per cluster spatially balanced sampling

Blair Robertson, Chris Price

Summary: Spatial sampling designs are crucial for accurate estimation of population parameters. This study proposes a new design method that generates samples with good spatial spread and performs favorably compared to existing designs.

COMPUTATIONAL STATISTICS & DATA ANALYSIS (2024)

Article Computer Science, Interdisciplinary Applications

Simultaneous confidence region of an embedded one-dimensional curve in multi-dimensional space

Hiroya Yamazoe, Kanta Naito

Summary: This paper focuses on the simultaneous confidence region of a one-dimensional curve embedded in multi-dimensional space. An estimator of the curve is obtained through local linear regression on each variable in multi-dimensional data. A method to construct a simultaneous confidence region based on this estimator is proposed, and theoretical results for the estimator and the region are developed. The effectiveness of the region is demonstrated through simulation studies and applications to artificial and real datasets.

COMPUTATIONAL STATISTICS & DATA ANALYSIS (2024)

Article Computer Science, Interdisciplinary Applications

Efficient and robust optimal design for quantile regression based on linear programming

Cheng Peng, Drew P. Kouri, Stan Uryasev

Summary: This paper introduces a novel optimal experimental design method for quantifying the distribution tails of uncertain system responses. The method minimizes the variance or conditional value-at-risk of the upper bound of the predicted quantile, and estimates the data uncertainty using quantile regression. The optimal design problems are solved as linear programming problems, making the proposed methods efficient even for large datasets.

COMPUTATIONAL STATISTICS & DATA ANALYSIS (2024)

Article Computer Science, Interdisciplinary Applications

Multi-block alternating direction method of multipliers for ultrahigh dimensional quantile fused regression

Xiaofei Wu, Hao Ming, Zhimin Zhang, Zhenyu Cui

Summary: This paper proposes a model that combines quantile regression and fused LASSO penalty, and introduces an iterative algorithm based on ADMM to solve high-dimensional datasets. The paper proves the global convergence and comparable convergence rates of the algorithm, and analyzes the theoretical properties of the model. Numerical experimental results support the superior performance of the model.

COMPUTATIONAL STATISTICS & DATA ANALYSIS (2024)

Article Computer Science, Interdisciplinary Applications

Nonparametric augmented probability weighting with sparsity

Xin He, Xiaojun Mao, Zhonglei Wang

Summary: This paper proposes a nonparametric imputation method with sparsity to estimate the finite population mean, using an efficient kernel method and sparse learning for estimation. An augmented inverse probability weighting framework is adopted to achieve a central limit theorem for the proposed estimator under regularity conditions.

COMPUTATIONAL STATISTICS & DATA ANALYSIS (2024)

Article Computer Science, Interdisciplinary Applications

Conditional-mean multiplicative operator models for count time series

Christian H. Weiss, Fukang Zhu

Summary: This study introduces a multiplicative error model (CMEMs) for discrete-valued count time series, which is closely related to the integer-valued generalized autoregressive conditional heteroscedasticity (INGARCH) models. It derives the stochastic properties and estimation approaches of different types of INGARCH-CMEMs, and demonstrates their performance and application through simulations and real-world data examples.

COMPUTATIONAL STATISTICS & DATA ANALYSIS (2024)

Article Computer Science, Interdisciplinary Applications

Hybrid exact-approximate design approach for sparse functional data

Ming-Hung Kao, Ping-Han Huang

Summary: Optimal designs for sparse functional data under the functional empirical component (FEC) settings are investigated. New computational methods and theoretical results are developed to efficiently obtain optimal exact and approximate designs. A hybrid exact-approximate design approach is proposed and demonstrated to be efficient through simulation studies and a real example.

COMPUTATIONAL STATISTICS & DATA ANALYSIS (2024)

Article Computer Science, Interdisciplinary Applications

GP-BART: A novel Bayesian additive regression trees approach using Gaussian processes

Mateus Maia, Keefe Murphy, Andrew C. Parnell

Summary: The Bayesian additive regression trees (BART) model is a powerful ensemble method for regression tasks, but its lack of smoothness and explicit covariance structure can limit its performance. The Gaussian processes Bayesian additive regression trees (GP-BART) model addresses this limitation by incorporating Gaussian process priors, resulting in superior performance in various scenarios.

COMPUTATIONAL STATISTICS & DATA ANALYSIS (2024)

Article Computer Science, Interdisciplinary Applications

Additive partially linear model for pooled biomonitoring data

Xichen Mou, Dewei Wang

Summary: Human biomonitoring is a method of monitoring human health by measuring the accumulation of harmful chemicals in the body. To reduce the high cost of chemical analysis, researchers have adopted a cost-effective approach that combines specimens and analyzes the concentration of toxic substances in the pooled samples. To effectively interpret these aggregated measurements, a new regression framework is proposed by extending the additive partially linear model (APLM). The APLM is versatile in capturing the complex association between outcomes and covariates, making it valuable in assessing the complex interplay between chemical bioaccumulation and potential risk factors.

COMPUTATIONAL STATISTICS & DATA ANALYSIS (2024)

Article Computer Science, Interdisciplinary Applications

Laplace approximated quasi-likelihood method for heteroscedastic survival data

Lili Yu, Yichuan Zhao

Summary: The classical accelerated failure time model is a linear model commonly used for right censored survival data, but it cannot handle heteroscedastic survival data. This paper proposes a Laplace approximated quasi-likelihood method with a continuous estimating equation to address this issue, and provides estimation bias and confidence interval estimation formulas.

COMPUTATIONAL STATISTICS & DATA ANALYSIS (2024)

Article Computer Science, Interdisciplinary Applications

Standard error estimates in hierarchical generalized linear models

Shaobo Jin, Youngjo Lee

Summary: Hierarchical generalized linear models are widely used for fitting random effects models, but the standard error estimators receive less attention. Current standard error estimation methods are not necessarily accurate, and a sandwich estimator is proposed to improve the accuracy of standard error estimation.

COMPUTATIONAL STATISTICS & DATA ANALYSIS (2024)

Article Computer Science, Interdisciplinary Applications

Probability of default estimation in credit risk using mixture cure models

Rebeca Pelaez, Ingrid Van Keilegom, Ricardo Cao, Juan M. Vilar

Summary: This article proposes an estimator for the probability of default (PD) in credit risk, derived from a nonparametric conditional survival function estimator based on cure models. The asymptotic expressions for bias, variance, and normality of the estimator are presented. Through simulation and empirical studies, the performance and practical behavior of the nonparametric estimator are compared with other methods.

COMPUTATIONAL STATISTICS & DATA ANALYSIS (2024)

Article Computer Science, Interdisciplinary Applications

Joint modelling of the body and tail of bivariate data

L. M. Andre, J. L. Wadsworth, A. O'Hagan

Summary: This paper proposes a dependence model that captures the entire data range in multi-variable cases. By blending two copulas with different characteristics and using a dynamic weighting function for smooth transition, the model is able to flexibly capture various dependence structures.

COMPUTATIONAL STATISTICS & DATA ANALYSIS (2024)

Article Computer Science, Interdisciplinary Applications

Significance test for semiparametric conditional average treatment effects and other structural functions

Niwen Zhou, Xu Guo, Lixing Zhu

Summary: The paper investigates hypothesis testing regarding the potential additional contributions of other covariates to the structural function, given the known covariates. The proposed distance-based test, based on Neyman's orthogonality condition, effectively detects local alternatives and is robust to the influence of nuisance functions. Numerical studies and real data analysis demonstrate the importance of this test in exploring covariates associated with AIDS treatment effects.

COMPUTATIONAL STATISTICS & DATA ANALYSIS (2024)

Article Computer Science, Interdisciplinary Applications

Full uncertainty analysis for Bayesian nonparametric mixture models

Blake Moya, Stephen G. Walker

Summary: A full posterior analysis method for nonparametric mixture models using Gibbs-type prior distributions, including the well known Dirichlet process mixture (DPM) model, is presented. The method removes the random mixing distribution and enables a simple-to-implement Markov chain Monte Carlo (MCMC) algorithm. The removal procedure reduces some of the posterior uncertainty and introduces a novel replacement approach. The method only requires the probabilities of a new or an old value associated with the corresponding Gibbs-type exchangeable sequence, without the need for explicit representations of the prior or posterior distributions. This allows the implementation of mixture models with full posterior uncertainty, including one introduced by Gnedin. The paper also provides numerous illustrations and introduces an R-package called CopRe that implements the methodology.

COMPUTATIONAL STATISTICS & DATA ANALYSIS (2024)