4.5 Article

Simulation of discontinuous dynamic recrystallization in pure Cu using a probabilistic cellular automaton

期刊

COMPUTATIONAL MATERIALS SCIENCE
卷 49, 期 1, 页码 25-34

出版社

ELSEVIER
DOI: 10.1016/j.commatsci.2010.04.012

关键词

Recrystallization; Cellular automaton; Hot compression; Copper

向作者/读者索取更多资源

A cellular automaton algorithm with probabilistic cell switches is employed in the simulation of dynamic discontinuous recrystallization. Recrystallization kinetics are formulated on a microlevel where, once nucleated, new grains grow under the driving pressure available from the competing processes of stored energy minimization and boundary energy reduction. Simulations of the microstructural changes in pure Cu under hot compression are performed where the influence of different thermal conditions are studied. The model is shown to capture both the microstructural evolution in terms of grain size and grain shape changes and also the macroscopic flow stress behavior of the material. The latter gives the expected transition from single- to multiple-peak serrated flow with increasing temperature. Further, the effects on macroscopic flow stress by varying the initial grain size is analyzed and the model is found to replicate the shift towards more serrated flow as the initial grain size is reduced. Conversely, the flow stress is stabilized by larger initial grain sizes. The extent of recrystallization as obtained from simulations are compared to classical JMAK theory and proper agreement with theory is established. In addition, by tracing the strain state during the simulations, a post-processing step is devised to obtain the macroscopic deformation of the cellular automaton domain, giving the expected deformation of the equiaxed recrystallized grains due to the macroscopic compression. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据