4.7 Article

Thermally activated healing in a mendable resin using a non woven EMAA fabric

期刊

COMPOSITES SCIENCE AND TECHNOLOGY
卷 72, 期 3, 页码 453-460

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2011.12.007

关键词

Smart materials; Fracture toughness; Impact behaviour; Self healing

向作者/读者索取更多资源

This paper explores the efficacy of polyethylene-co-ethacrylic acid (EMAA), as a thermally activated thermoplastic healing agent embedded within a carbon fibre reinforced epoxy composite. EMAA fibres have been shown to effectively restore mode I properties in a fibre reinforced composite after thermal activation yet other forms of the healing agent or modes of deformation have so far not been studied at all. This work, uses EMAA in the form of a non-woven mesh, rather than a woven fabric to study the healing mechanism and effectiveness of property restoration for mode I (crack opening) and mode II (shear) failure as well as for high speed impact. Property restoration after mode I damage was found to be over 200% and increased with increasing EMAA concentration. For mode II shear failure, the property restoration was reduced to a little over 100% regardless of EMAA concentration. Mode II analysis also showed that the modulus could be restored to about 80% of its original value when modified with EMAA. Repeated impacting using a falling weight test produced no property restoration after healing, yet the modified laminates appeared protected from further damage compared with an unmodified laminate. This was attributed to the formation of a ductile thermoplastic layer mitigating further damage. Scanning electron microscopy revealed that regardless of the extent of healing, the form of the healing agent or the mode of damage, the unique pressure delivery mechanism previously identified, was always observed to occur. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据