4.7 Article

Blast performance of a sacrificial cladding with composite tubes for protection of civil engineering structures

期刊

COMPOSITES PART B-ENGINEERING
卷 65, 期 -, 页码 131-146

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2014.02.004

关键词

Polymer-matrix composites; Impact behaviour; Numerical analysis; Mechanical testing

资金

  1. Fund for Scientific Research - Flanders (F.W.O) [G.0114.07]

向作者/读者索取更多资源

Crushing of composite tubes under impact loading has been studied very intensively over the last few decades. On the contrary, the energy absorption of composite tubes under blast loading is much less studied, and very limited public literature is available. This paper presents the experimental testing of a sacrificial cladding structure, composed of glass/polyester tubes, under blast loading. The composite tubes show stable and progressive crushing and the peak force transferred to the non-sacrificial structure is compared for different configurations of the composite tubes. The results also show that the diffraction of the pressure wave and the skin panel that distributes the blast pressure are critical issues in the set-up of the experiments. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Construction & Building Technology

Effect of matrix modification on the durability of cementitious composites reinforced with aligned Ensete fibre

Markos Tsegaye Beyene, Felicite Kingne, Eleni Tsangouri, Michael El Kadi, Tamene Adugna Demissie, Hubert Rahier, Danny Van Hemelrijck, Tine Tysmans

Summary: Researchers investigated the effects of replacing Portland cement with supplementary cementitious materials (SCM) on the durability of Ensete ventricosum (Ev) fibres in cementitious matrices. The flexure tests showed that composites with 100% Portland cement matrix lost ductility and strength after 25 wet-dry cycles, while ternary matrices of 70% FA and 10% MK exhibited minimal degradation. Partial replacement of Portland cement by SCMs can reduce the degradation of natural fibres in cement-based composites.

CONSTRUCTION AND BUILDING MATERIALS (2023)

Article Chemistry, Physical

Measuring and Predicting the Effects of Residual Stresses from Full-Field Data in Laser-Directed Energy Deposition

Efstratios Polyzos, Hendrik Pulju, Peter Maeckel, Michael Hinderdael, Julien Ertveldt, Danny Van Hemelrijck, Lincy Pyl

Summary: This article presents a novel approach that utilizes machine learning and polynomial chaos expansion to assess the effects of residual stresses in laser-directed energy deposition (L-DED). The approach involves measuring the thermal expansion coefficient of thin-wall L-DED steel specimens and using it to predict the displacement field in incremental hole-drilling tests. Experimental measurements from 3D micro-digital image correlation setup show good agreement with the predictions.

MATERIALS (2023)

Article Polymer Science

An Open-Source ABAQUS Plug-In for Delamination Analysis of 3D Printed Composites

Efstratios Polyzos, Danny Van Hemelrijck, Lincy Pyl

Summary: This article introduces the development and implementation of the Delamination Plug-in, an open-source tool for modeling delamination tests in the ABAQUS software. The plug-in combines the benefits of GUI and FE programming and provides algorithms for various delamination tests. It is demonstrated to be efficient and applicable for both conventional and 3D printed composite laminates.

POLYMERS (2023)

Article Polymer Science

Characterizing Pure Polymers under High Speed Compression for the Micromechanical Prediction of Unidirectional Composites

Pei Hao, Siebe W. F. Spronk, Ruben D. B. Sevenois, Wim van Paepegem, Francisco A. Gilabert

Summary: The nonlinear behaviour of FRPC in transverse loading is mainly induced by the constituent polymer matrix, which is rate- and temperature-dependent. This paper presents a test setup to provide robust stress-strain measurements for FRPC at high strain rates. The micro- and macroscopic thermomechanical response of CF/PR520 and CF/PEEK systems are analyzed, showing excessive strain localization and discussing the differences between thermoplastic and thermoset matrices.

POLYMERS (2023)

Article Construction & Building Technology

Ultrasonic evaluation of self-healing cementitious materials with superabsorbent polymers: Mortar vs. concrete

Gerlinde Lefever, Ahmad Shawki Charkieh, Mustafa Abbass, Danny Van Hemelrijck, Didier Snoeck, Dimitrios G. Aggelis

Summary: The inclusion of superabsorbent polymers (SAPs) is increasingly attractive to promote the self-healing ability of cementitious materials and reduce manual repair costs. Ultrasonic monitoring is used for non-destructive evaluation to determine the effectiveness and compare the healing capacity of different mixtures. However, previous studies mainly focused on mortars without large aggregates, so monitoring and comparing the self-healing of concrete and mortar were conducted. Ultrasonic surface wave monitoring shows the potential to evaluate crack closure and the effects of different SAPs.

DEVELOPMENTS IN THE BUILT ENVIRONMENT (2023)

Article Engineering, Manufacturing

Mode I, mode II and mixed mode I-II delamination of carbon fibre-reinforced polyamide composites 3D-printed by material extrusion

Amalia Katalagarianakis, Efstratios Polyzos, Danny Van Hemelrijck, Lincy Pyl

Summary: This study experimentally investigates the delamination behavior of carbon fiber-reinforced polyamide laminates under different loading modes. The interlaminar fracture toughness at crack initiation was found to be 1.5 kJ/m2 in mode I, 2.1 kJ/m2 in mode II, and 1.0 kJ/m2 in mixed mode I-II. Various analytical and numerical models were used to validate the experimental results, and scanning electron microscopy revealed the micro-mechanical origins of the crack in different loading configurations.

COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING (2023)

Article Engineering, Multidisciplinary

Stochastic semi-analytical modeling of reinforced filaments for additive manufacturing

E. Polyzos, D. Van Hemelrijck, L. Pyl

Summary: This study presents a new stochastic modeling approach to address challenges in micromechanical modeling of short-fiber composites. It introduces a stochastic generation technique based on kernel density estimation to save time and effort in fiber extraction, and a novel semi-analytical approach to consider multiple fibers while reducing computational effort. The approach is demonstrated on recycled poly(ethylene terephthalate) filaments reinforced with recycled short carbon fibers for additive manufacturing, showing similar predictions of elastic properties using only 40-50 fibers compared to a direct modeling approach with 1050 fibers, and close agreement with experimental data.

COMPOSITES PART B-ENGINEERING (2023)

Article Mechanics

Experimental evaluation of J-integral in elastic and elastic-plastic polymers by means of digital image correlation and higher-order eigenfields under mode-I

Ali Shivaie Kojouri, Haniyeh Khosravi Rikaee, Kalliopi-Artemi Kalteremidou, Danny Van Hemelrijck

Summary: This study examines the capability of the digital image correlation method to determine the Jintegral for polymers with elastic and elastic-plastic behavior. To achieve this, single-edge notch tension specimens manufactured out of PMMA and HDPE are tested under pure mode I loading conditions, and the displacement field at the surface of each specimen is obtained using DIC. The J-integral for each specimen is then computed by combining the higher-order singular and non-singular terms derived from DIC.

ENGINEERING FRACTURE MECHANICS (2023)

Article Mechanics

Extension-bending coupling phenomena and residual hygrothermal stresses effects on the Energy Release Rate and mode mixity of generally layered laminates

E. Polyzos, D. Van Hemelrijck, L. Pyl

Summary: This article presents a new analytical solution to the delamination problem of interface deformable generally layered composite laminates. The governing equation for interface forces and moments is obtained under plane strain assumptions, considering extension-bending coupling phenomena and residual hygrothermal stresses. The interface forces and moments are included in a novel generalization of the J-integral to estimate the Energy Release Rate (ERR). The analytical results of ERR and mode mixity show excellent agreement with Finite Element models for a Double Cantilever Beam test of a generally layered fibre metal laminate, utilizing the Cohesive Zone Method (CZM) and the Virtual Crack Closure Technique (VCCT).

INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES (2023)

Article Mechanics

Stochastic modeling of the elastic response of parts produced by material extrusion using ideal voids

E. Polyzos, D. Van Hemelrijck, L. Pyl

Summary: A novel approach is proposed in this study to convert real voids to ideal supercylindrical ones, which better approximate the shape of voids and can be described by a single parameter. The elastic properties of acrylonitrile butadiene styrene are predicted using the polynomial chaos expansion technique. The results are compared with previous tensile tests and different modeling approaches to gain a comprehensive understanding of the advantages of the new approach.

INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES (2023)

Article Materials Science, Multidisciplinary

Capturing size effects in effective field methods through the prism of strain gradient elasticity

E. Polyzos, D. Polyzos, D. Van Hemelrijck, L. Pyl

Summary: The majority of studies in the open literature use homogenization models to consider microstructural parameters, but they fail to account for size effects at small scales. This study introduces a novel approach that combines property contribution tensors with strain gradient elasticity to capture size effects and improve predictions about effective elastic properties.

MECHANICS OF MATERIALS (2023)

Article Engineering, Manufacturing

Direct modeling of the elastic properties of single 3D printed composite filaments using X-ray computed tomography images segmented by neural networks

E. Polyzos, C. Nikolaou, D. Polyzos, D. Van Hemelrijck, L. Pyl

Summary: This study introduces a new method for creating accurate microscale finite element models of 3D printed composites. It utilizes micro-CT and neural network algorithms to differentiate and predict the distribution of fibers in the microstructure, and uses finite element analysis to determine the elastic properties of the composite material. The results show that this method is accurate and reliable, and also reveal the transversely isotropic behavior of the printed composites.

ADDITIVE MANUFACTURING (2023)

Proceedings Paper Construction & Building Technology

Crack Closure Assessment in Cementitious Mixtures Based on Ultrasound Measurements

Gerlinde Lefever, Nele De Belie, Danny Van Hemelrijck, Dimitrios G. Aggelis, Didier Snoeck

Summary: This study evaluates the closure of cracks in cementitious mixtures with and without superabsorbent polymers using ultrasound measurements. By sending ultrasonic waves through the cracks, information on both the sound material and the healing products formed within the cracks is obtained. The healing process is promoted by wet-dry curing cycles and monitored for 14 days. Ultrasound was found to be sensitive to the closure of cracks, as confirmed by microscopic analysis of the reduction in crack width opening.

PROCEEDINGS OF THE 75TH RILEM ANNUAL WEEK 2021 (2023)

Article Engineering, Mechanical

Analytical probabilistic progressive damage modeling of single composite filaments of material extrusion

E. Polyzos, E. Vereroudakis, S. Malefaki, D. Vlassopoulos, D. Van Hemelrijck, L. Pyl

Summary: This research investigates the elastic and damage characteristics of individual composite beads used in 3D printed composites. A new analytical probabilistic progressive damage model (PPDM) is introduced to capture the elastic and damage attributes of these beads. Experimental results show strong agreement with the model in terms of elastic behavior and ultimate strength and strain.

INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES (2024)

Article Construction & Building Technology

Monitoring the self-healing evolution of cementitious mixtures with superabsorbent polymers through air-coupled ultrasound

Gerlinde Lefever, Ahmad Shawki Charkieh, Danny Van Hemelrijck, Didier Snoeck, Dimitrios G. Aggelis

Summary: Non-destructive evaluation using air-coupled ultrasound provides an efficient method for assessing the self-healing ability of cementitious composites.

CONSTRUCTION AND BUILDING MATERIALS (2023)

Article Engineering, Multidisciplinary

The relationship between the impact position interference and CAI strength of composite sandwich structures under double impacts

Keyu Zhu, Xitao Zheng, Jing Peng, Jiaming Sun, Ruilin Huang, Leilei Yan

Summary: This paper discusses the influence of multiple impacts on the compression strength of honeycomb sandwich structures with composite face sheets. It is found that the size of the impactor affects the turning point of the compression strength. Additionally, high impact energy leads to damage in the bottom face sheet and reduces the overall compression strength.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Effect of carbonation on the corrosion behavior of steel rebar embedded in magnesium phosphate cement

Danqian Wang, Yanfei Yue, Jueshi Qian

Summary: Magnesium Potassium Phosphate Cement (MKPC) as a binder for steel rebars shows improved corrosion resistance when subjected to carbonation, due to the increase in pH and the formation of a more protective oxide film.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Mechanical properties and failure mechanisms of all-CFRP corrugated sandwich truncated cone

Zhibin Li, Wenyu Wang, Pengcheng Xue, Xingyu Wei, Jian Xiong

Summary: This work proposes a design approach and manufacturing method for carbon fiber reinforced plastic (CFRP) corrugated sandwich truncated cones (CSTC) to improve their anti-debonding ability and ensure reliability. The study establishes theoretical models for CSTCs' stiffness and failure modes, which are verified through experiments and finite element analysis (FEA). The research reveals the effect of geometric parameters on failure modes and performs an optimal design for CSTC structures. The findings have significant implications for the design and application of lightweight CSTCs in constructions, such as launch vehicle adapters.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Asymmetric wettability fibrous membranes: Preparation and biologic applications

Mingyu Zhang, Lei Chu, Jiahua Chen, Fuxun Qi, Xiaoyan Li, Xinliang Chen, Deng-Guang Yu

Summary: This review summarizes the different structures and construction methods of fibrous membranes with asymmetric wettability. It also reviews the biological applications of these membranes and suggests future challenges.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Effect of fibre concentration on the mechanical properties of welded reinforced polypropylene

E. Mofakhami, L. Gervat, B. Fayolle, G. Miquelard-Garnier, C. Ovalle, L. Laiarinandrasana

Summary: This study investigates the effects of fibre concentration on the mechanical response of welded glass-fibre-reinforced polypropylene (GF-PP). Experimental observations reveal a significant reduction in weld ratio, up to 60%, indicating a decreased strength compared to the bulk material. Increasing fibre content in the welded material results in a decrease in stress at break and strain at the maximum stress. The use of DIC technique and X-ray microtomography further confirms the localized strain amplification in the welded zone due to the significant increase in fibre density.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Interlaminar shear strength of Carbon/PEEK thermoplastic composite laminate: Effects of in-situ consolidation by automated fiber placement and autoclave re-consolidation

Emad Pourahmadi, Farjad Shadmehri, Rajamohan Ganesan

Summary: This research compares the mechanical properties of laminates manufactured using automated fiber placement and conventional autoclave curing methods. The results show that laminates manufactured using automated fiber placement have a lower interlaminar shear strength compared to laminates reconsolidated using autoclave curing. A finite element simulation method is proposed to quantitatively analyze these differences.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Bolted joint method for composite materials using a novel fiber/metal patch as hole reinforcement-Improving both static and fatigue properties

Johnny Jakobsen, Benny Endelt, Fahimeh Shakibapour

Summary: This study proposes a new bolted/pinned joining method for composite applications, which improves load transfer by introducing a patch-type reinforcement. Experimental results demonstrate significant improvements in both static and fatigue load conditions compared to existing methods. Finite element simulations highlight the advantage of this method, as it creates a more efficient load-transferring mechanism through different stress distributions.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Novel multi-crack damage approach for pultruded fiber-polymer web-flange junctions

Gisele G. Cintra, Janine D. Vieira, Daniel C. T. Cardoso, Thomas Keller

Summary: This paper proposes a novel approach to assess multi-crack behavior in layered fiber-polymer composites. The generated Compliance and R-curves provide useful insights into understanding the multiple delamination process and allow for separate evaluation of strain energy release rate (SERR) for each crack. The developed cohesive zone model successfully simulates the failure process zone of three parallel cracks, showing good agreement between the numerical model and experimental results.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Uncovering the hidden structure: A study on the feasibility of induction thermography for fiber orientation analysis in CFRP composites using 2D-FFT

Renil Thomas Kidangan, Sreedhar Unnikrishnakurup, C. Krishnamurthy, Krishnan Balasubramaniam

Summary: The induction heating process can accurately identify fiber orientation and stacking order, making it a valuable tool for large-area inspection and quality control in manufacturing fiber-reinforced composites.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Morphological characteristics of spray dried cellulose nanofibers produced using various wood pulp feedstocks and their effects on polypropylene composite properties

Sungjun Hwang, Yousoo Han, Douglas J. Gardner

Summary: Bleached Kraft pulp, unbleached Kraft pulp, and old corrugated cardboard pulp are suitable for producing cellulose nanofibril suspensions. Spray drying is a fast, simple, cost-effective, and scalable drying method. Spray-dried cellulose nanofibrils can be used as reinforcing materials in polypropylene matrices. The particle size of cellulose nanofibrils affects the material properties.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Four-dimensional printing of continuous glass fiber-reinforced thermoplastics

Mehdi Mahdavi, Abbas Zolfaghari

Summary: This study aims to improve the recovery forces of shape memory polymers (SMPs) through material extrusion additive manufacturing. By using glass fiber (GF) as reinforcement and manufacturing multi-layer composite specimens, it was found that PLA with 6.62% GF exhibited the best recovery force, which was further optimized through annealing heat treatment.

COMPOSITES PART B-ENGINEERING (2024)

Review Engineering, Multidisciplinary

Flame retardancy and fire mechanical properties for natural fiber/polymer composite: A review

Xiang Ao, Antonio Vazquez-Lopez, Davide Mocerino, Carlos Gonzalez, De-Yi Wang

Summary: The vulnerability of natural fibers to heat and fire poses a significant challenge for their substitution of traditional fiber reinforcements in composite materials. Natural fiber/polymer composites (NFCs) are regarded as potential candidates for engineering applications due to their environmental friendliness and low-impact sourcing. Thus, appropriate approaches need to be implemented to enhance the fire safety of NFCs. This review summarizes and discusses the latest understanding of flammability and thermal properties of natural fibers, with a special focus on their interaction with polymer matrix in fire behavior. Additionally, the latest developments in flame-retardant approaches for NFCs are reviewed, covering both flame retardancy and fire structural integrity. Finally, future prospects and perspectives on fire safety of NFCs are proposed, providing insights into further advancements of NFCs.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Construction of an epoxidized, phosphorus-based poly(styrene butadiene styrene) and its application in high-performance epoxy resin

Cheng Wang, Siqi Huo, Guofeng Ye, Bingtao Wang, Zhenghong Guo, Qi Zhang, Pingan Song, Hao Wang, Zhitian Liu

Summary: The demand for multifunctional, transparent epoxy resin with superior dielectric, mechanical, and fire-safety performances is increasing in modern industries. Researchers have developed an epoxidized, phosphaphenanthrene-containing poly(styrene butadiene styrene) (ESD) for advanced fire-safe epoxy resin, which maintains high transparency and improves UV-blocking property. The addition of 10 wt% ESD results in improved mechanical properties, decreased dielectric constant and loss, and outperformance compared to other fire-safe epoxy resins. This research provides an effective method for developing multifunctional flame-retardant epoxy resin.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Inner superhydrophobic materials based on waste fly ash: Microstructural morphology of microetching effects

Bo Pang, Heping Zheng, Zuquan Jin, Dongshuai Hou, Yunsheng Zhang, Xiaoyun Song, Yanan Sun, Zhiyong Liu, Wei She, Lin Yang, Mengyuan Li

Summary: This study develops an internal superhydrophobic material (ISM) using waste denitrification fly ash, which maintains stable hydrophobicity under harsh conditions of use and does not rely on expensive fluor-based surface modifications. The synthesized ISM has excellent matrix strength, strong waterproof properties, and retains superhydrophobicity even at damaged or friction interfaces.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Directional eddy current probe configuration for in-line detection of out-of-plane wrinkles

Meirbek Mussatayev, Qiuji Yi, Mark Fitzgerald, Vincent K. Maes, Paul Wilcox, Robert Hughes

Summary: Real-time monitoring of carbon fibre composites during Automated Fibre Placement (AFP) manufacturing remains a challenge for non-destructive evaluation (NDE) techniques. This study designed a directional eddy-current (EC) probe to evaluate the detectability of out-of-plane wrinkles. Experimental evaluations and finite element modeling were conducted to better understand the relationship between eddy-current density and defect detection. The findings suggest that the probe configuration with an asymmetric driver coil and differential pickup coils shows the best capability for wrinkle detection.

COMPOSITES PART B-ENGINEERING (2024)