4.7 Article

Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part II: Pressure-loaded shells

期刊

COMPOSITE STRUCTURES
卷 93, 期 10, 页码 2496-2503

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2011.04.005

关键词

Nanocomposites; Functionally graded materials; Cylindrical shell; Postbuckling; External pressure

向作者/读者索取更多资源

A postbuckling analysis is presented for nanocomposite cylindrical shells reinforced by single-walled carbon nanotubes (SWCNTs) subjected to lateral or hydrostatic pressure in thermal environments. The multi-scale model for functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shells under external pressure is proposed and a singular perturbation technique is employed to determine the buckling pressure and postbuckling equilibrium path. Numerical results for pressure-loaded, perfect and imperfect, FG-CNTRC cylindrical shells are obtained under different sets of thermal environmental conditions. The results for uniformly distributed CNTRC shell, which is a special case in the present study, are compared with those of the FG-CNTRC shell. The results show that the linear functionally graded reinforcements can increase the buckling pressure as well as postbuckling strength of the shell under external pressure. The results reveal that the carbon nanotube volume fraction has a significant effect on the buckling pressure and postbuckling behavior of CNTRC shells. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据