4.7 Article

Evaluation of FRP and hybrid FRP cables for super long-span cable-stayed bridges

期刊

COMPOSITE STRUCTURES
卷 92, 期 10, 页码 2582-2590

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2010.01.023

关键词

Hybrid composites; FRP cable; Modelling; Super long-span cable-stayed bridge

资金

  1. National Key Technology R&D Program of China in the 11th Five-Year Period [2006BAJ03B07]

向作者/读者索取更多资源

This paper evaluates the safety factors, the applicable lengths, and relative cost of FRP (fiber reinforced polymer) and hybrid FRP cables that are potentially suitable for cable-stayed bridges with a super long-span of between 1000 m and 10,000 m. Following previous studies on 1000-m scale cable-stayed bridges with FRP cables, two kinds of hybrid FRP cables - the previously discussed hybrid basalt and carbon FRP (B/CFRP) cable and the newly-developed basalt and steel-wire FRP (B/SFRP) cable - as well as conventional steel cable. CFRP cable, and BFRP cable are further investigated focusing on their promise in meeting potential requirements for super long-span bridges. Some major results are as follows: (1) a three-stage model for determining safety factors of cables with different kinds and lengths is proposed; (2) a threshold of lambda(2) is suggested to achieve both high material and stiffness utilization efficiency, based on which the applicable lengths for different kinds of cables were evaluated; and (3) hybrid B/SFRP cables and BFRP cables are comparable in cost to steel cables within a 3000 m span, while hybrid B/CFRP cables and CFRP cables demonstrate a superior performance/cost ratio over a longer span. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据