4.4 Article

Characterizing ovarian gene expression during oocyte growth in Atlantic cod (Gadus morhua)

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cbd.2013.11.001

关键词

Atlantic cod; Gene expression; Oocyte growth; Reproductive endocrinology; Vitellogenesis

资金

  1. NH Sea Grant
  2. UNH Marine Program
  3. New Hampshire Agricultural Experiment Station (NHAES) [2540]

向作者/读者索取更多资源

Vertebrate oocytes undergo dramatic changes during development as they accumulate many RNA transcripts, glycoproteins, and yolk proteins, necessary to ensure proper fertilization and embryogenesis. Oogenesis in teleosts often requires several years for completion, but very little is known about the early developmental stages. Recently, two-stage gene expression comparisons were made during oocyte growth in coho salmon (Oncorhynchus kisutch) and Atlantic cod (Gadus morhua), but more broad-scale, comprehensive assessments have not been conducted. The objectives of the present study were to characterize the gene expression patterns throughout oocyte growth in cod and compare them to changes previously identified in coho salmon. A quantitative PCR survey was conducted using 50 genes at six ovarian stages, ranging from the onset of primary growth (oocyte differentiation) to late vitellogenesis. Most expression patterns could be grouped into three major clusters, consisting of oocyte-derived (cluster 1) and likely follicle cell (clusters 2 and 3) genes. Oocyte genes were elevated during primary growth, while many follicle cell transcripts were abundant during oocyte differentiation and vitellogenesis. Few expression changes identified in coho salmon were evident in cod, which is likely due to differences in reproductive strategies. These results demonstrate that dynamic changes in gene expression occur during oocyte growth in teleost fish. (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Biochemistry & Molecular Biology

Gastrointestinal dysbiosis induced by Nocardia sp. infection in tilapia

Diana Medina-Felix, Francisco Vargas-Albores, Estefania Garibay-Valdez, Luis Rafael Martinez-Cordova, Marcel Martinez-Porchas

Summary: In this research, the effects of Nocardia infection on fish gastrointestinal microbiota were analyzed. It was found that the infection led to decreased survival rate, severe damage to the stomach microbiota, and a significant increase in Proteobacteria. A negative correlation network between Proteobacteria and other important phyla was observed. Therefore, Nocardia sp. is an emerging pathogen capable of inducing dysbiosis and causing significant mortalities.

COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS (2024)

Article Biochemistry & Molecular Biology

Comparative transcriptome analysis reveals growth and molecular pathway of body color regulation in turbot (Scophthalmus maximus) exposed to different light spectrum

Lele Wu, Wen Sun, Jiale Zhou, Yaolin Li, Jun Li, Zongcheng Song, Changbin Song, Shihong Xu, Xinlu Yue, Xian Li

Summary: The study finds that red light induces dichromatic skin pigmentation in turbot juveniles, with some individuals displaying black coloration and others displaying lighter skin. The upregulated gene expressions related to melanin synthesis and the involvement of the nervous system in spectral environment-driven color regulation are both crucial factors.

COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS (2024)